The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Tyrphostin-25     2-[(3,4,5-trihydroxyphenyl) methylidene]pro...

Synonyms: Tyrphostin 25, Tyrphostin A25, Lopac-T-7290, CHEMBL310798, AG-J-10591, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of NSC676484


High impact information on NSC676484

  • A stimulatory peptide derived from the NH2 terminus of the small GTP-binding protein ADP ribosylation factor 1 (ARF1) antagonized the inhibitory effect of TA25, indicating that both agents influence the same pathway leading to secretory vesicle formation [3].
  • This effect was abrogated by wortmannin and tyrphostin A25, indicating the potential involvement of phosphatidylinositol 3-kinase and epidermal growth factor (EGF) receptor activation [4].
  • Pretreatment of neutrophils either with Ro 31-8220 and H7, 2 specific inhibitors of protein kinase C (PKC), or with inhibitors of protein tyrosine kinases such as tyrphostin A25 or herbimycin A did not prevent the NSAID-mediated L-selectin shedding [5].
  • Tyrosine kinase inhibitors lavendustin A (1 mumol/L) and tyrphostin A25 (3 mumol/L) and protein kinase C inhibitors staurosporine (30 nmol/L) and chelerythrine (1 mumol/L) prevented the stretch-induced increase in right atrial ir-BNP concentrations at 2 hours [6].
  • We show that selective inhibition of PTK activity, with genistein and (3,4,5-tri-hydroxyphenyl)-methylene(-propanedinitrile) tyrphostin-25 inhibits basal and neuropeptide-stimulated SCLC cell growth [7].

Biological context of NSC676484


Anatomical context of NSC676484


Associations of NSC676484 with other chemical compounds


Gene context of NSC676484


Analytical, diagnostic and therapeutic context of NSC676484


  1. Ruffling membrane, stress fiber, cell spreading and proliferation abnormalities in human Schwannoma cells. Pelton, P.D., Sherman, L.S., Rizvi, T.A., Marchionni, M.A., Wood, P., Friedman, R.A., Ratner, N. Oncogene (1998) [Pubmed]
  2. Inhibition of epidermal growth factor receptor-associated tyrosine kinase blocks glioblastoma invasion of the brain. Penar, P.L., Khoshyomn, S., Bhushan, A., Tritton, T.R. Neurosurgery (1997) [Pubmed]
  3. Formation of nascent secretory vesicles from the trans-Golgi network of endocrine cells is inhibited by tyrosine kinase and phosphatase inhibitors. Austin, C.D., Shields, D. J. Cell Biol. (1996) [Pubmed]
  4. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. Taupin, D.R., Kinoshita, K., Podolsky, D.K. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  5. Down-regulation of L-selectin expression in neutrophils by nonsteroidal anti-inflammatory drugs: role of intracellular ATP concentration. Gómez-Gaviro, M.V., Domínguez-Jiménez, C., Carretero, J.M., Sabando, P., González-Alvaro, I., Sánchez-Madrid, F., Díaz-González, F. Blood (2000) [Pubmed]
  6. Involvement of transcriptional and posttranscriptional mechanisms in cardiac overload-induced increase of B-type natriuretic peptide gene expression. Magga, J., Vuolteenaho, O., Tokola, H., Marttila, M., Ruskoaho, H. Circ. Res. (1997) [Pubmed]
  7. Inhibition of neuropeptide-stimulated tyrosine phosphorylation and tyrosine kinase activity stimulates apoptosis in small cell lung cancer cells. Tallett, A., Chilvers, E.R., Hannah, S., Dransfield, I., Lawson, M.F., Haslett, C., Sethi, T. Cancer Res. (1996) [Pubmed]
  8. Ornithine decarboxylase transformation of NIH/3T3 cells is mediated by altered epidermal growth factor receptor activity. Moshier, J.A., Malecka-Panas, E., Geng, H., Dosescu, J., Tureaud, J., Skunca, M., Majumdar, A.P. Cancer Res. (1995) [Pubmed]
  9. Inhibition of autophagy and multiple steps in asialoglycoprotein endocytosis by inhibitors of tyrosine protein kinases (tyrphostins). Holen, I., Strømhaug, P.E., Gordon, P.B., Fengsrud, M., Berg, T.O., Seglen, P.O. J. Biol. Chem. (1995) [Pubmed]
  10. Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. Tuck, A.B., Hota, C., Wilson, S.M., Chambers, A.F. Oncogene (2003) [Pubmed]
  11. Angiotensin II activation of insulin-like growth factor 1 receptor transcription is mediated by a tyrosine kinase-dependent redox-sensitive mechanism. Du, J., Peng, T., Scheidegger, K.J., Delafontaine, P. Arterioscler. Thromb. Vasc. Biol. (1999) [Pubmed]
  12. Tyrphostins disrupt stress fibers and cellular attachments in endothelial monolayers. Farooki, A.Z., Epstein, D.L., O'Brien, E.T. Exp. Cell Res. (1998) [Pubmed]
  13. Signal transduction pathway regulating prostaglandin EP3 receptor-induced neurite retraction: requirement for two different tyrosine kinases. Aoki, J., Katoh, H., Yasui, H., Yamaguchi, Y., Nakamura, K., Hasegawa, H., Ichikawa, A., Negishi, M. Biochem. J. (1999) [Pubmed]
  14. Insensitivity of cardiac delayed-rectifier I(Kr) to tyrosine phosphorylation inhibitors and stimulators. Missan, S., Zhabyeyev, P., Linsdell, P., McDonald, T.F. Br. J. Pharmacol. (2006) [Pubmed]
  15. EGF regulates early embryonic mouse gut development in chemically defined organ culture. Duh, G., Mouri, N., Warburton, D., Thomas, D.W. Pediatr. Res. (2000) [Pubmed]
  16. Regulation of eicosanoid biosynthesis in the macrophage. Involvement of protein tyrosine phosphorylation and modulation by selective protein tyrosine kinase inhibitors. Glaser, K.B., Sung, A., Bauer, J., Weichman, B.M. Biochem. Pharmacol. (1993) [Pubmed]
  17. Extensive apoptotic death of rat colonic cells deprived of crypt habitat. Lifshitz, S., Schwartz, B., Polak-Charcon, S., Benharroch, D., Prinsloo, I., Lamprecht, S.A. J. Cell. Physiol. (1998) [Pubmed]
  18. Effects of tyrosine kinase inhibitors on tyrosine phosphorylations and the insulin-like effects in response to human growth hormone in isolated rat adipocytes. Ridderstråle, M., Tornqvist, H. Endocrinology (1996) [Pubmed]
  19. Activation of human effector cells by different bacterial toxins (leukocidin, alveolysin, and erythrogenic toxin A): generation of interleukin-8. König, B., Köller, M., Prevost, G., Piemont, Y., Alouf, J.E., Schreiner, A., König, W. Infect. Immun. (1994) [Pubmed]
  20. Flavonoids with epidermal growth factor-receptor tyrosine kinase inhibitory activity stimulate PEPT1-mediated cefixime uptake into human intestinal epithelial cells. Wenzel, U., Kuntz, S., Daniel, H. J. Pharmacol. Exp. Ther. (2001) [Pubmed]
  21. A new type of protein methylation activated by tyrphostin A25 and vanadate. Miranda, T.B., Lowenson, J.D., Clarke, S. FEBS Lett. (2004) [Pubmed]
  22. Protein tyrosine kinase inhibitors decrease lipopolysaccharide-induced proinflammatory cytokine production in mixed glia, microglia-enriched or astrocyte-enriched cultures. Kong, L.Y., Lai, C., Wilson, B.C., Simpson, J.N., Hong, J.S. Neurochem. Int. (1997) [Pubmed]
  23. Protein tyrosine kinase inhibitors suppress the production of nitric oxide in mixed glia, microglia-enriched or astrocyte-enriched cultures. Kong, L.Y., McMillian, M.K., Maronpot, R., Hong, J.S. Brain Res. (1996) [Pubmed]
  24. Role of kinases and G-proteins in the hyposmotic stimulation of cardiac I(Ks). Missan, S., Linsdell, P., McDonald, T.F. Biochim. Biophys. Acta (2006) [Pubmed]
  25. Endothelin-1 decreases gap junctional intercellular communication by inducing phosphorylation of connexin 43 in human ovarian carcinoma cells. Spinella, F., Rosanò, L., Di Castro, V., Nicotra, M.R., Natali, P.G., Bagnato, A. J. Biol. Chem. (2003) [Pubmed]
  26. Constitutively active Galpha12, Galpha13, and Galphaq induce Rho-dependent neurite retraction through different signaling pathways. Katoh, H., Aoki, J., Yamaguchi, Y., Kitano, Y., Ichikawa, A., Negishi, M. J. Biol. Chem. (1998) [Pubmed]
  27. Oxyhemoglobin-induced suppression of voltage-dependent K+ channels in cerebral arteries by enhanced tyrosine kinase activity. Ishiguro, M., Morielli, A.D., Zvarova, K., Tranmer, B.I., Penar, P.L., Wellman, G.C. Circ. Res. (2006) [Pubmed]
WikiGenes - Universities