The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Altered spermidine/spermine N1-acetyltransferase activity as a mechanism of cellular resistance to bis(ethyl)polyamine analogues.

To develop a model system to investigate mechanisms of antiproliferative action of bis(ethyl)polyamine analogues, intermittent analogue treatments followed by recovery periods in drug-free medium were used to select an N(1), N(12)-bis(ethyl)spermine-resistant derivative of the Chinese hamster ovary cell line C55. 7. The resulting C55.7Res line was at least 10-fold resistant to N(1),N(12)-bis(ethyl)spermine and N(1), N(11)-bis(ethyl)norspermine. The stability of the resistance in the absence of selection pressure was >/=9 months, indicating that a heritable genotypic change was responsible for the resistance phenotype. Polyamine transport alterations and multi-drug resistance were eliminated as causes of the resistance. Spermidine/spermine N(1)-acetyltransferase (SSAT) activity and regulation were altered in C55.7Res cells as basal activity was decreased, and no activity induction resulted from exposure to analogue concentrations, which caused 300-fold enzyme induction in parental cells. SSAT mRNA levels in the absence and presence of analogue were unchanged, but no SSAT protein was detected in C55.7Res cells. A point mutation, which results in the change leucine156 (a fully conserved residue) to phenylalanine, was identified in the C55.7Res SSAT cDNA. Expression of wtSSAT activity in C55.7Res cells restored sensitivity to bis(ethyl)polyamines. These results provided definitive evidence that SSAT activity is a critical target of the cytotoxic action of these analogues.[1]

References

 
WikiGenes - Universities