The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Site-directed mutagenesis of the fructose 6-phosphate binding site of the pyrophosphate-dependent phosphofructokinase of Entamoeba histolytica.

Attempts to define the active site of pyrophosphate-dependent phosphofructokinase (PPi-PFK) using homology modeling based on the three-dimensional structure of the ATP-dependent PFKs from bacteria have been frustrated by low sequence identity between PPi- and ATP-PFKs in their carboxyl terminal halves. In the current study, alanine scanning mutagenesis of residues in the carboxyl terminal half of the PPi-PFK of Entamoeba histolytica coupled with comparative sequence analysis and computational modeling is used to identify residues that contribute to fructose 6-phosphate (fructose 6-P) binding. Of seven alanine mutants that were generated by site-directed mutagenesis, Arg377, Ser392, Arg405, Lys408, His415, His416, and Arg423, only the last mutant, Arg423Ala, was found to have dramatically lower affinity for fructose 6-P. Mutation of Arg 423 decreased k(cat) by 10,000-fold and decreased apparent affinity for fructose 6-P by 126-fold, while the K(m) for PPi increased only 4-fold. The second greatest effect was seen with Arg377Ala, which had a nearly 10-fold decrease in apparent affinity and an approximate 60-fold decrease in maximal activity. Another residue, Tyr420, was chosen for mutagenesis by its complete identity in all other PPi-PFK. This residue and its homologue in Escherichia coli ATP-PFK, His249, were mutated and shown to be very important for substrate binding in both enzymes.[1]


WikiGenes - Universities