The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Activation of extracellular signal-regulated kinase 1/2 inhibits type I collagen expression by human skin fibroblasts.

Treatment with the lipid second messenger, ceramide, activates extracellular signal-regulated kinase-1/2 ( ERK1/2), c-Jun N-terminal kinase, and p38 in human skin fibroblasts and induces their collagenase-1 expression (Reunanen, N., Westermarck, J., Häkkinen, L., Holmström, T. H., Elo, I., Eriksson, J. E., and Kähäri, V.-M. (1998) J. Biol. Chem. 273, 5137-5145). Here we show that C(2)-ceramide inhibits expression of type I and III collagen mRNAs in dermal fibroblasts, suppresses proalpha2(I) collagen promoter activity, and reduces stability of type I collagen mRNAs. The down-regulatory effect of C(2)-ceramide on type I collagen mRNA levels was abrogated by protein kinase C inhibitors H7, staurosporine, and Ro-31-8220 and potently inhibited by a combination of MEK1,2 inhibitor PD98059 and p38 inhibitor SB203580. Activation of ERK1/2 by adenovirus- mediated expression of constitutively active MEK1 resulted in marked down-regulation of type I collagen mRNA levels and production in fibroblasts, whereas activation of p38 by constitutively active MAPK kinase-3b and MAPK kinase-6b slightly up-regulated type I collagen expression. These results identify the ERK1/2 signaling cascade as a potent negative regulatory pathway with respect to type I collagen expression in fibroblasts, suggesting that it mediates inhibition of collagen production in response to mitogenic stimulation and transformation.[1]


WikiGenes - Universities