Pilocarpine-induced status epilepticus causes N-methyl-D-aspartate receptor-dependent inhibition of microsomal Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake.
Status epilepticus is associated with sustained and elevated levels of cytosolic Ca(2+). To elucidate the mechanisms associated with changes of cytosolic Ca(2+) after status epilepticus, this study was initiated to evaluate the effect of pilocarpine-induced status epilepticus on Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in microsomes isolated from rat cortex, because the Ca(2+) uptake mechanism plays a major role in regulating intracellular Ca(2+) levels. The data demonstrated that the initial rate and overall Ca(2+) uptake in microsomes from pilocarpine treated animals were significantly inhibited compared with those in microsomes from saline-treated control animals. It was also shown that the inhibition of Ca(2+) uptake caused by status epilepticus was not an artifact of increased Ca(2+) release from microsomes, selective isolation of damaged microsomes from the homogenate, or decreased Mg(2+)/Ca(2+) ATPase protein in the microsomes. Pretreatment with the NMDA antagonist dizocilpine maleate blocked status epilepticus-induced inhibition of the initial rate and overall Ca(2+) uptake. The data suggest that inhibition of microsomal Mg(2+)/Ca(2+) ATPase Ca(2+) uptake is involved in NMDA-dependent deregulation of cytosolic Ca(2+) homeostasis associated with status epilepticus.[1]References
- Pilocarpine-induced status epilepticus causes N-methyl-D-aspartate receptor-dependent inhibition of microsomal Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake. Parsons, J.T., Churn, S.B., Kochan, L.D., DeLorenzo, R.J. J. Neurochem. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg