The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Calcium-dependent and -independent hetero-oligomerization in the synaptotagmin family.

Synaptotagmins constitute a family of membrane proteins that are characterized by one transmembrane region and two C2 domains. Recent genetic and biochemical studies have indicated that oligomerization of synaptotagmin (Syt) I is important for expression of function during exocytosis of synaptic vesicles. However, little is known about hetero-oligomerization in the synaptotagmin family. In this study, we showed that the synaptotagmin family is a type I membrane protein (N(lumen)/C(cytoplasm)) by introducing an artificial N-glycosylation site at the N-terminal domain, and systematically examined all the possible combinations of hetero-oligomerization among synaptotagmin family proteins (Syts I-XI). We classified the synaptotagmin family into four distinct groups based on differences in Ca(2+)-dependent and -independent oligomerization activity. Group A Syts (III, V, VI, and X) form strong homo- and hetero-oligomers by disulfide bonds at an N-terminal cysteine motif irrespective of the presence of Ca(2+) [Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427]. Group B Syts (I, II, VIII, and XI) show moderate homo-oligomerization irrespective of the presence of Ca(2+). Group C synaptotagmins are characterized by weak Ca(2+)-dependent (Syts IX) or no homo-oligomerization activity ( Syt IV). Syt VII (Group D) has unique Ca(2+)-dependent homo-oligomerization properties with EC(50) values of about 150 microM Ca(2+) [Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185]. Syts IV, VIII, and XI did not show any apparent hetero-oligomerization activity, but some sets of synaptotagmin isoforms can hetero-oligomerize in a Ca(2+)-dependent and/or -independent manner. Our data suggest that Ca(2+)-dependent and -independent hetero-oligomerization of synaptotagmins may create a variety of Ca(2+)-sensors.[1]


WikiGenes - Universities