The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: alteration of pyridine nucleotide binding by a single amino acid substitution.

The crystal structure of a major oxygen-insensitive nitroreductase (NfsA) from Escherichia coli has been solved by the molecular replacement method at 1.7-A resolution. This enzyme is a homodimeric flavoprotein with one FMN cofactor per monomer and catalyzes reduction of nitrocompounds using NADPH. The structure exhibits an alpha + beta-fold, and is comprised of a central domain and an excursion domain. The overall structure of NfsA is similar to the NADPH-dependent flavin reductase of Vibrio harveyi, despite definite difference in the spatial arrangement of residues around the putative substrate-binding site. On the basis of the crystal structure of NfsA and its alignment with the V. harveyi flavin reductase and the NADPH-dependent nitro/flavin reductase of Bacillus subtilis, residues Arg(203) and Arg(208) of the loop region between helices I and J in the vicinity of the catalytic center FMN is predicted as a determinant for NADPH binding. The R203A mutant results in a 33-fold increase in the K(m) value for NADPH indicating that the side chain of Arg(203) plays a key role in binding NADPH possibly to interact with the 2'-phosphate group.[1]

References

 
WikiGenes - Universities