The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

SNAP-24, a Drosophila SNAP-25 homologue on granule membranes, is a putative mediator of secretion and granule-granule fusion in salivary glands.

Fusion of vesicles with target membranes is dependent on the interaction of target ( t) and vesicle (v) SNARE (soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein receptor) proteins located on opposing membranes. For fusion at the plasma membrane, the t-SNARE SNAP-25 is essential. In Drosophila, the only known SNAP-25 isoform is specific to neuronal axons and synapses and additional t-SNAREs must exist that mediate both non-synaptic fusion in neurons and constitutive and regulated fusion in other cells. Here we report the identification and characterization of SNAP-24, a closely related Drosophila SNAP-25 homologue, that is expressed throughout development. The spatial distribution of SNAP-24 in the nervous system is punctate and, unlike SNAP-25, is not concentrated in synaptic regions. In vitro studies, however, show that SNAP-24 can form core complexes with syntaxin and both synaptic and non-synaptic v-SNAREs. High levels of SNAP-24 are found in larval salivary glands, where SNAP-24 localizes mainly to granule membranes rather than the plasma membrane. During glue secretion, the massive exocytotic event of these glands, SNAP-24 containing granules fuse with one another and the apical membrane, suggesting that glue secretion utilizes compound exocytosis and that SNAP-24 mediates secretion.[1]


WikiGenes - Universities