The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Syx1A  -  Syntaxin 1A

Drosophila melanogaster

Synonyms: CG10716, CG18615, CG31136, CG5448, CT30033, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

High impact information on Syx1A

  • Complete absence of syx-1A causes subtle morphological defects in the peripheral and central nervous systems, affects nonneural secretory events, and entirely abolishes neurotransmitter release [1].
  • The most extensively studied candidate for the Ca(2+)-sensing trigger is synaptotagmin I, whose Ca(2+)-dependent interactions with acidic phospholipids and syntaxin have largely been ascribed to its C(2)A domain, although the C(2)B domain also binds Ca(2+) (refs 7, 8) [2].
  • Therefore, UNC-13 binding to the N terminus of syntaxin may promote the open configuration of syntaxin [3].
  • Thus, it is likely that UNC-13 primes synaptic vesicles for fusion by promoting the open configuration of syntaxin [3].
  • Elimination of dunc-13 expression abolished synaptic transmission, an effect comparable only to removal of the core complex proteins Syntaxin and Synaptobrevin [4].

Biological context of Syx1A


Anatomical context of Syx1A

  • Biochemical studies suggest that syntaxin 1A participates in multiple protein-protein interactions in the synaptic terminal, but the in vivo significance of these interactions is poorly understood [5].
  • These results suggest that the PKC-catalyzed phosphorylation of Munc-18 plays an important role in regulating the interaction of Munc-18 with syntaxin and thereby the docking and/or the fusion of synaptic vesicles with the presynaptic plasma membrane [6].
  • The Q-SNARE syntaxin 1 is a central component of the synaptic membrane fusion machinery [7].
  • The syntaxin Avalanche (Avl) localizes to early endosomes, and loss of avl results in the cellular accumulation of specific membrane proteins, including the Notch signalling receptor and the polarity determinant Crumbs (Crb) [10].
  • Hypomorphic mutations in syntaxin-1A or n-synaptobrevin, which also disrupt neurotransmitter release, did not affect synapse proliferation at the neuromuscular junction, suggesting calcium entry through presynaptic N-type calcium channels, not neurotransmitter release per se, is important for synaptic growth [11].

Associations of Syx1A with chemical compounds

  • Overexpression of cysteine-string proteins in Drosophila reveals interactions with syntaxin [12].
  • In contrast, a separate Ca2+-dependent interaction between synaptotagmin and syntaxin, a component of the fusion apparatus, occurs with an EC50 value of approximately 100 microM Ca2+ and involves the synergistic action of both C2 domains of synaptotagmin [13].

Physical interactions of Syx1A

  • In vitro studies, however, show that SNAP-24 can form core complexes with syntaxin and both synaptic and non-synaptic v-SNAREs [14].
  • Taken together, these results suggest that ROP interacts with syntaxin in vivo and is a rate-limiting regulator of exocytosis that performs both positive and inhibitory functions in neurotransmission [15].

Regulatory relationships of Syx1A

  • These vesicles are mature and functional since spontaneous vesicle fusion persists in the absence of n-synaptobrevin and since vesicle fusion is triggered by hyperosmotic saline in the absence of syntaxin [8].

Other interactions of Syx1A


Analytical, diagnostic and therapeutic context of Syx1A

  • We demonstrate that two-dimensional gel electrophoresis in conjunction with mass spectrometry is a suitable tool for the identification of intrinsic membrane proteins, and we show that among them a syntaxin, AtSyp122, is phosphorylated rapidly in response to flg22 [19].


  1. Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Schulze, K.L., Broadie, K., Perin, M.S., Bellen, H.J. Cell (1995) [Pubmed]
  2. Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain. Robinson, I.M., Ranjan, R., Schwarz, T.L. Nature (2002) [Pubmed]
  3. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Richmond, J.E., Weimer, R.M., Jorgensen, E.M. Nature (2001) [Pubmed]
  4. Drosophila UNC-13 is essential for synaptic transmission. Aravamudan, B., Fergestad, T., Davis, W.S., Rodesch, C.K., Broadie, K. Nat. Neurosci. (1999) [Pubmed]
  5. Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Wu, M.N., Fergestad, T., Lloyd, T.E., He, Y., Broadie, K., Bellen, H.J. Neuron (1999) [Pubmed]
  6. Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin. Fujita, Y., Sasaki, T., Fukui, K., Kotani, H., Kimura, T., Hata, Y., Südhof, T.C., Scheller, R.H., Takai, Y. J. Biol. Chem. (1996) [Pubmed]
  7. The relation of protein binding to function: what is the significance of munc18 and synaptotagmin binding to syntaxin 1, and where are the corresponding binding sites? Matos, M.F., Rizo, J., Südhof, T.C. Eur. J. Cell Biol. (2000) [Pubmed]
  8. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Broadie, K., Prokop, A., Bellen, H.J., O'Kane, C.J., Schulze, K.L., Sweeney, S.T. Neuron (1995) [Pubmed]
  9. Characterization and gene cloning of Drosophila syntaxin 1 (Dsynt1): the fruit fly homologue of rat syntaxin 1. Cerezo, J.R., Jiménez, F., Moya, F. Brain Res. Mol. Brain Res. (1995) [Pubmed]
  10. Endocytic control of epithelial polarity and proliferation in Drosophila. Lu, H., Bilder, D. Nat. Cell Biol. (2005) [Pubmed]
  11. Presynaptic N-type calcium channels regulate synaptic growth. Rieckhof, G.E., Yoshihara, M., Guan, Z., Littleton, J.T. J. Biol. Chem. (2003) [Pubmed]
  12. Overexpression of cysteine-string proteins in Drosophila reveals interactions with syntaxin. Nie, Z., Ranjan, R., Wenniger, J.J., Hong, S.N., Bronk, P., Zinsmaier, K.E. J. Neurosci. (1999) [Pubmed]
  13. A novel function for the second C2 domain of synaptotagmin. Ca2+-triggered dimerization. Chapman, E.R., An, S., Edwardson, J.M., Jahn, R. J. Biol. Chem. (1996) [Pubmed]
  14. SNAP-24, a Drosophila SNAP-25 homologue on granule membranes, is a putative mediator of secretion and granule-granule fusion in salivary glands. Niemeyer, B.A., Schwarz, T.L. J. Cell. Sci. (2000) [Pubmed]
  15. ROP, the Drosophila Sec1 homolog, interacts with syntaxin and regulates neurotransmitter release in a dosage-dependent manner. Wu, M.N., Littleton, J.T., Bhat, M.A., Prokop, A., Bellen, H.J. EMBO J. (1998) [Pubmed]
  16. Genetic characterization of the Drosophila homologue of coronin. Bharathi, V., Pallavi, S.K., Bajpai, R., Emerald, B.S., Shashidhara, L.S. J. Cell. Sci. (2004) [Pubmed]
  17. SNARE-dependent signaling at the Drosophila wing margin. Stewart, B.A., Mohtashami, M., Zhou, L., Trimble, W.S., Boulianne, G.L. Dev. Biol. (2001) [Pubmed]
  18. Evolutionary conservation of synaptosome-associated protein 25 kDa (SNAP-25) shown by Drosophila and Torpedo cDNA clones. Risinger, C., Blomqvist, A.G., Lundell, I., Lambertsson, A., Nässel, D., Pieribone, V.A., Brodin, L., Larhammar, D. J. Biol. Chem. (1993) [Pubmed]
  19. A plasma membrane syntaxin is phosphorylated in response to the bacterial elicitor flagellin. Nühse, T.S., Boller, T., Peck, S.C. J. Biol. Chem. (2003) [Pubmed]
WikiGenes - Universities