The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Vesicular localization and characterization of a novel post-proline-cleaving aminodipeptidase, quiescent cell proline dipeptidase.

A large number of chemokines, cytokines, and signal peptides share a highly conserved X-Pro motif on the N-terminus. The cleavage of this N-terminal X-Pro dipeptide results in functional alterations of chemokines such as RANTES, stroma-derived factor-1, and macrophage-derived chemokine. Until recently, CD26/ DPPIV was the only known protease with the ability to cleave N-terminal X-Pro motifs at neutral pH. We have isolated and cloned a novel serine protease, quiescent cell proline dipeptidase (QPP), with substrate specificity similar to that of CD26/ DPPIV. In this paper we show that QPP, like CD26/ DPPIV, is synthesized with a propeptide and undergoes N:-glycosylation. Interestingly, this glycosylation is required for QPP enzymatic activity, but not for its localization. Unlike the cell surface molecule, CD26/ DPPIV, QPP is targeted to intracellular vesicles that are distinct from lysosomes. Proteinase K treatment of intact vesicles indicates that QPP is located within the vesicles. These vesicles appear to have a secretory component, as QPP is secreted in a functionally active form in response to calcium release. The presence of QPP in the vesicular compartment suggests that molecules bearing the N-terminal X-Pro motif can be cleaved at multiple sites within and outside the cell. These results expand the potential site(s) and scope of a process that appears to be an important mechanism of post-translational regulation.[1]

References

  1. Vesicular localization and characterization of a novel post-proline-cleaving aminodipeptidase, quiescent cell proline dipeptidase. Chiravuri, M., Agarraberes, F., Mathieu, S.L., Lee, H., Huber, B.T. J. Immunol. (2000) [Pubmed]
 
WikiGenes - Universities