The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

CCL22  -  chemokine (C-C motif) ligand 22

Homo sapiens

Synonyms: A-152E5.1, ABCD-1, C-C motif chemokine 22, CC chemokine STCP-1, DC/B-CK, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CCL22


Psychiatry related information on CCL22

  • However, since all abnormal ultrasound scans were found in children with a mitochondrial disorder, and no significant correlation with the MDC score was found, muscle ultrasound can be used complementary to this scoring system to facilitate the decision-making in pursuing further invasive diagnostics [4].
  • This article presents one such effort, the Roberts' Triple ABCD Model. This model is an up-to-date and integrated conceptual framework that helps to provide the foundation for developing a unified standard of care for crisis and disaster mental health interventions [5].
  • STCP smoking cessation efforts are targeted at specific populations that are at greater risk for developing cancer including youth, minority and ethnic groups, women, smokeless tobacco users, and heavy smokers [6].

High impact information on CCL22


Chemical compound and disease context of CCL22

  • Cocaine, in synergy with HIV peptides, also up-regulates DC-SIGN gene expression by MDC [10].
  • Here we examined the presence of PDC together with myeloid dendritic cells (MDC) in the nasal epithelia of healthy individuals, of asymptomatic patients with chronic nasal allergy, of patients undergoing steroid therapy, and of patients with infectious rhinitis or rhinosinusitis [11].
  • CONCLUSIONS: ABCD, like other lipid-based and liposomal formulations of amphotericin B, has been designed to deliver the active drug to the target site, while reducing renal toxicity [12].
  • Even at daily doses as high as 6 mg/kg, and mean and median cumulative doses of 4.0 g and 2.4 g, respectively, ABCD had little renal toxicity: the mean change in serum level of creatinine from baseline to final value was -0.02 mg/dL [13].
  • Amphotericin B colloidal dispersion (ABCD), a novel formulation of amphotericin B and cholesteryl sulfate in a 1:1 ratio, was developed to reduce the toxicity of amphotericin B yet retain its antifungal efficacy [13].

Biological context of CCL22

  • Several other chemokines in addition to CXCL10 were able to increase CCL22-mediated chemotaxis [14].
  • In this regard, CCL22 stimulates phosphatidylinositol-3 kinase-independent phosphorylation of the novel delta isoform of PKC at threonine 505, situated within its activation loop--an event closely associated with increased catalytic activity [15].
  • In contrast, expression of Th2-associated chemokines does not strictly correlate with the Th2-promoting DC phenotype, except for CCL22/MDC, which is preferentially expressed by Th2-promoting DC [16].
  • To explore this relationship in greater detail, we have more precisely localized the MDC gene to chromosome 16q13, the same position reported for the TARC gene [17].
  • In addition, the genes for MDC and TARC are encoded by human chromosome 16 [17].

Anatomical context of CCL22


Associations of CCL22 with chemical compounds

  • Although both CCL17 and CCL22 caused mobilization of intracellular calcium, none of them induced migration or histamine release [21].
  • In contrast, inhibition of the B7:CD28 pathway using a CTLA-4-Ig fusion protein completely inhibited diesel-dependent increase of allergen-induced MDC production [23].
  • We conclude that minimal NH2-terminal truncation of MDC differentially affects its various immunologic functions [24].
  • However, CCL22 is much more powerful than CCL17 in the induction of rapid integrin-dependent T cell adhesion on VCAM-1 under conditions of physiological flow [25].
  • Adenosine diphosphate strongly potentiates the ability of the chemokines MDC, TARC, and SDF-1 to stimulate platelet function [26].

Physical interactions of CCL22

  • The chemokine receptor CCR4 binds MDC with high affinity and also responds by calcium flux and chemotaxis [27].
  • A chemokine binding assay on whole cells was developed using biotinylated synthetic CCL22 as a model ligand [28].

Regulatory relationships of CCL22


Other interactions of CCL22

  • Intracellular staining confirms that CD3+CD4+ T cells are the source of the prototype HIV-1-inhibiting chemokines CCL22 and CCL4 [34].
  • The results reveal a striking selectivity for stromal cell-derived factor-1alpha (CXCL12) and macrophage-derived chemokine (CCL22) [35].
  • Also, CCR4 is internalized between 5 and 45 min but reappears in the membranes after 60 min of stimulation with MDC [36].
  • However, MDC reactivity was consistently localized to the outer wall of Hassal's corpuscles, whereas ELC reactivity was often found in cells surrounding medullary vessels, but not in Hassal's corpuscles [37].
  • The median serum levels of MDC (3131 vs. 2394 pg/ml; p = 0.031) and EOX (80 vs. 61 pg/ml; p = 0.046) were also higher in children with moderate as compared with mild AD [38].

Analytical, diagnostic and therapeutic context of CCL22


  1. Activation of phosphoinositide 3-kinases by the CCR4 ligand macrophage-derived chemokine is a dispensable signal for T lymphocyte chemotaxis. Cronshaw, D.G., Owen, C., Brown, Z., Ward, S.G. J. Immunol. (2004) [Pubmed]
  2. Selective induction of Th2-attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein-Barr virus. Nakayama, T., Hieshima, K., Nagakubo, D., Sato, E., Nakayama, M., Kawa, K., Yoshie, O. J. Virol. (2004) [Pubmed]
  3. CCL22 and CCL17 in rat radiation pneumonitis and in human idiopathic pulmonary fibrosis. Inoue, T., Fujishima, S., Ikeda, E., Yoshie, O., Tsukamoto, N., Aiso, S., Aikawa, N., Kubo, A., Matsushima, K., Yamaguchi, K. Eur. Respir. J. (2004) [Pubmed]
  4. Skeletal muscle ultrasonography in children with a dysfunction in the oxidative phosphorylation system. Pillen, S., Morava, E., Van Keimpema, M., Ter Laak, H.J., De Vries, M.C., Rodenburg, R.J., Zwarts, M.J. Neuropediatrics. (2006) [Pubmed]
  5. Applying Roberts' Triple ABCD Model in the aftermath of crisis-inducing and trauma-inducing community disasters. Roberts, A.R. International journal of emergency mental health. (2006) [Pubmed]
  6. Role of biology and prevention in aerodigestive tract cancers. Greenwald, P., Stern, H.R. J. Natl. Cancer Inst. Monographs (1992) [Pubmed]
  7. Inhibition of HIV-1 infection by the beta-chemokine MDC. Pal, R., Garzino-Demo, A., Markham, P.D., Burns, J., Brown, M., Gallo, R.C., DeVico, A.L. Science (1997) [Pubmed]
  8. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. Iellem, A., Mariani, M., Lang, R., Recalde, H., Panina-Bordignon, P., Sinigaglia, F., D'Ambrosio, D. J. Exp. Med. (2001) [Pubmed]
  9. Activated murine B lymphocytes and dendritic cells produce a novel CC chemokine which acts selectively on activated T cells. Schaniel, C., Pardali, E., Sallusto, F., Speletas, M., Ruedl, C., Shimizu, T., Seidl, T., Andersson, J., Melchers, F., Rolink, A.G., Sideras, P. J. Exp. Med. (1998) [Pubmed]
  10. Cocaine modulates dendritic cell-specific C type intercellular adhesion molecule-3-grabbing nonintegrin expression by dendritic cells in HIV-1 patients. Nair, M.P., Mahajan, S.D., Schwartz, S.A., Reynolds, J., Whitney, R., Bernstein, Z., Chawda, R.P., Sykes, D., Hewitt, R., Hsiao, C.B. J. Immunol. (2005) [Pubmed]
  11. Analysis of plasmacytoid and myeloid dendritic cells in nasal epithelium. Hartmann, E., Graefe, H., Hopert, A., Pries, R., Rothenfusser, S., Poeck, H., Mack, B., Endres, S., Hartmann, G., Wollenberg, B. Clin. Vaccine Immunol. (2006) [Pubmed]
  12. Amphotericin-B colloidal dispersion. A review of its use against systemic fungal infections and visceral leishmaniasis. Brogden, R.N., Goa, K.L., Coukell, A.J. Drugs (1998) [Pubmed]
  13. The safety and efficacy of amphotericin B colloidal dispersion in the treatment of invasive mycoses. Oppenheim, B.A., Herbrecht, R., Kusne, S. Clin. Infect. Dis. (1995) [Pubmed]
  14. CCL22-induced responses are powerfully enhanced by synergy inducing chemokines via CCR4: evidence for the involvement of first beta-strand of chemokine. Sebastiani, S., Danelon, G., Gerber, B., Uguccioni, M. Eur. J. Immunol. (2005) [Pubmed]
  15. Evidence that phospholipase-C-dependent, calcium-independent mechanisms are required for directional migration of T-lymphocytes in response to the CCR4 ligands CCL17 and CCL22. Cronshaw, D.G., Kouroumalis, A., Parry, R., Webb, A., Brown, Z., Ward, S.G. J. Leukoc. Biol. (2006) [Pubmed]
  16. Differential expression of inflammatory chemokines by Th1- and Th2-cell promoting dendritic cells: a role for different mature dendritic cell populations in attracting appropriate effector cells to peripheral sites of inflammation. Lebre, M.C., Burwell, T., Vieira, P.L., Lora, J., Coyle, A.J., Kapsenberg, M.L., Clausen, B.E., De Jong, E.C. Immunol. Cell Biol. (2005) [Pubmed]
  17. Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. Imai, T., Chantry, D., Raport, C.J., Wood, C.L., Nishimura, M., Godiska, R., Yoshie, O., Gray, P.W. J. Biol. Chem. (1998) [Pubmed]
  18. Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors. Piqueras, B., Connolly, J., Freitas, H., Palucka, A.K., Banchereau, J. Blood (2006) [Pubmed]
  19. Dendritic cells as a major source of macrophage-derived chemokine/CCL22 in vitro and in vivo. Vulcano, M., Albanesi, C., Stoppacciaro, A., Bagnati, R., D'Amico, G., Struyf, S., Transidico, P., Bonecchi, R., Del Prete, A., Allavena, P., Ruco, L.P., Chiabrando, C., Girolomoni, G., Mantovani, A., Sozzani, S. Eur. J. Immunol. (2001) [Pubmed]
  20. Chemokine-protease interactions in cancer. Van Damme, J., Struyf, S., Opdenakker, G. Semin. Cancer Biol. (2004) [Pubmed]
  21. CCL17 and CCL22 attenuate CCL5-induced mast cell migration. Juremalm, M., Olsson, N., Nilsson, G. Clin. Exp. Allergy (2005) [Pubmed]
  22. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Gear, A.R., Camerini, D. Microcirculation (New York, N.Y. : 1994) (2003) [Pubmed]
  23. Diesel exposure favors Th2 cell recruitment by mononuclear cells and alveolar macrophages from allergic patients by differentially regulating macrophage-derived chemokine and IFN-gamma-induced protein-10 production. Fahy, O., Sénéchal, S., Pène, J., Scherpereel, A., Lassalle, P., Tonnel, A.B., Yssel, H., Wallaert, B., Tsicopoulos, A. J. Immunol. (2002) [Pubmed]
  24. Enhanced anti-HIV-1 activity and altered chemotactic potency of NH2-terminally processed macrophage-derived chemokine (MDC) imply an additional MDC receptor. Struyf, S., Proost, P., Sozzani, S., Mantovani, A., Wuyts, A., De Clercq, E., Schols, D., Van Damme, J. J. Immunol. (1998) [Pubmed]
  25. Quantitative differences in chemokine receptor engagement generate diversity in integrin-dependent lymphocyte adhesion. D'Ambrosio, D., Albanesi, C., Lang, R., Girolomoni, G., Sinigaglia, F., Laudanna, C. J. Immunol. (2002) [Pubmed]
  26. Adenosine diphosphate strongly potentiates the ability of the chemokines MDC, TARC, and SDF-1 to stimulate platelet function. Gear, A.R., Suttitanamongkol, S., Viisoreanu, D., Polanowska-Grabowska, R.K., Raha, S., Camerini, D. Blood (2001) [Pubmed]
  27. Profile of human macrophage transcripts: insights into macrophage biology and identification of novel chemokines. Chantry, D., DeMaggio, A.J., Brammer, H., Raport, C.J., Wood, C.L., Schweickart, V.L., Epp, A., Smith, A., Stine, J.T., Walton, K., Tjoelker, L., Godiska, R., Gray, P.W. J. Leukoc. Biol. (1998) [Pubmed]
  28. Biotinylated synthetic chemokines: their use for the development of nonradioactive whole-cell binding assays. Thierry, A.C., Perrenoud, G., Pinaud, S., Bigler, N., Denis, B., Roggero, M., Moulon, C., Demotz, S. Journal of biomolecular screening : the official journal of the Society for Biomolecular Screening. (2003) [Pubmed]
  29. Macrophage-derived chemokine induces human eosinophil chemotaxis in a CC chemokine receptor 3- and CC chemokine receptor 4-independent manner. Bochner, B.S., Bickel, C.A., Taylor, M.L., MacGlashan, D.W., Gray, P.W., Raport, C.J., Godiska, R. J. Allergy Clin. Immunol. (1999) [Pubmed]
  30. CCR4 ligands are up-regulated in the airways of atopic asthmatics after segmental allergen challenge. Pilette, C., Francis, J.N., Till, S.J., Durham, S.R. Eur. Respir. J. (2004) [Pubmed]
  31. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Ghia, P., Strola, G., Granziero, L., Geuna, M., Guida, G., Sallusto, F., Ruffing, N., Montagna, L., Piccoli, P., Chilosi, M., Caligaris-Cappio, F. Eur. J. Immunol. (2002) [Pubmed]
  32. Divergent effects of interleukin-4 and interferon-gamma on macrophage-derived chemokine production: an amplification circuit of polarized T helper 2 responses. Bonecchi, R., Sozzani, S., Stine, J.T., Luini, W., D'Amico, G., Allavena, P., Chantry, D., Mantovani, A. Blood (1998) [Pubmed]
  33. Selective inhibition of HIV replication in primary macrophages but not T lymphocytes by macrophage-derived chemokine. Cota, M., Mengozzi, M., Vicenzi, E., Panina-Bordignon, P., Sinigaglia, F., Transidico, P., Sozzani, S., Mantovani, A., Poli, G. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  34. HIV-1-suppressive factors are secreted by CD4+ T cells during primary immune responses. Abdelwahab, S.F., Cocchi, F., Bagley, K.C., Kamin-Lewis, R., Gallo, R.C., DeVico, A., Lewis, G.K. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  35. Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. Lambeir, A.M., Proost, P., Durinx, C., Bal, G., Senten, K., Augustyns, K., Scharpé, S., Van Damme, J., De Meester, I. J. Biol. Chem. (2001) [Pubmed]
  36. Human NK cells express CC chemokine receptors 4 and 8 and respond to thymus and activation-regulated chemokine, macrophage-derived chemokine, and I-309. Inngjerdingen, M., Damaj, B., Maghazachi, A.A. J. Immunol. (2000) [Pubmed]
  37. Macrophage-derived chemokine and EBI1-ligand chemokine attract human thymocytes in different stage of development and are produced by distinct subsets of medullary epithelial cells: possible implications for negative selection. Annunziato, F., Romagnani, P., Cosmi, L., Beltrame, C., Steiner, B.H., Lazzeri, E., Raport, C.J., Galli, G., Manetti, R., Mavilia, C., Vanini, V., Chantry, D., Maggi, E., Romagnani, S. J. Immunol. (2000) [Pubmed]
  38. Serum concentration of macrophage-derived chemokine may be a useful inflammatory marker for assessing severity of atopic dermatitis in infants and young children. Leung, T.F., Ma, K.C., Hon, K.L., Lam, C.W., Wan, H., Li, C.Y., Chan, I.H. Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology. (2003) [Pubmed]
  39. Serum thymus and activation-regulated chemokine, macrophage-derived chemokine and eotaxin as markers of severity of atopic dermatitis. Jahnz-Rozyk, K., Targowski, T., Paluchowska, E., Owczarek, W., Kucharczyk, A. Allergy (2005) [Pubmed]
  40. Expression of macrophage-derived chemokine (MDC)/CCL22 in human lung cancer. Nakanishi, T., Imaizumi, K., Hasegawa, Y., Kawabe, T., Hashimoto, N., Okamoto, M., Shimokata, K. Cancer Immunol. Immunother. (2006) [Pubmed]
  41. Both Th1 and Th2 chemokines are elevated in sera of patients with autoimmune blistering diseases. Echigo, T., Hasegawa, M., Shimada, Y., Inaoki, M., Takehara, K., Sato, S. Arch. Dermatol. Res. (2006) [Pubmed]
  42. Linked chromosome 16q13 chemokines, macrophage-derived chemokine, fractalkine, and thymus- and activation-regulated chemokine, are expressed in human atherosclerotic lesions. Greaves, D.R., Häkkinen, T., Lucas, A.D., Liddiard, K., Jones, E., Quinn, C.M., Senaratne, J., Green, F.R., Tyson, K., Boyle, J., Shanahan, C., Weissberg, P.L., Gordon, S., Ylä-Hertualla, S. Arterioscler. Thromb. Vasc. Biol. (2001) [Pubmed]
WikiGenes - Universities