Induction of hypoxia-inducible-factor 1 by nitric oxide is mediated via the PI 3K pathway.
Adaptation to hypoxic stress provokes activation of the hypoxia-inducible-factor-1 (HIF-1) which mediates gene expression of, e.g., erythropoietin or vascular endothelial growth factor. Detailed information on signaling pathways that stabilize HIF-1 is missing, but reactive oxygen species degrade the HIF-1 alpha subunit, whereas phosphorylation causes its stabilization. It was believed that hypoxia resembles the only HIF-1 inducer but recent evidence characterized other activators of HIF-1 such as nitric oxide (NO). Herein, we concentrated on NO-evoked HIF-1 induction as a heretofore unappreciated inflammatory response in association with massive NO formation. We demonstrated that S-nitrosoglutathione induces HIF-1 alpha accumulation and concomitant DNA binding. The response was attenuated by the kinase inhibitor genistein and blockers of phosphatidylinositol 3-kinase such as Ly 294002 or wortmannin. Whereas mitogen-activated protein kinases were not involved, we noticed phosphorylation/activation of Akt in correlation with HIF-1 alpha stabilization. NO appears to regulate HIF-1 alpha via the PI 3K/Akt pathway under normoxic conditions.[1]References
- Induction of hypoxia-inducible-factor 1 by nitric oxide is mediated via the PI 3K pathway. Sandau, K.B., Faus, H.G., Brüne, B. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg