How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies.
We investigated the relationship between metal ion selective conformational changes of recoverin and its metal-bound coordination structures. Recoverin is a 23 kDa heterogeneously myristoylated Ca(2+)- binding protein that inhibits rhodopsin kinase. Upon accommodating two Ca(2+) ions, recoverin extrudes a myristoyl group and associates with the lipid bilayer membrane, which was monitored by the surface plasmon resonance (SPR) technique. Large changes in SPR signals were observed for Sr(2+), Ba(2+), Cd(2+), and Mn(2+) as well as Ca(2+), indicating that upon binding to these ions, recoverin underwent a large conformational change to extrude the myristoyl group, and thereby interacted with lipid membranes. In contrast, no SPR signal was induced by Mg(2+), confirming that even though it accommodates two Mg(2+) ions, recoverin does not induce the large conformational change. To investigate the coordination structures of metal-bound Ca(2+) binding sites, FT-IR studies were performed. The EF-hands, Ca(2+)-binding regions each comprising 12 residues, arrange to coordinate Ca(2+) with seven oxygen ligands, two of which are provided by a conserved bidentate Glu at the 12th relative position in the EF-hand. FT-IR analysis confirmed that Sr(2+), Ba(2+), Cd(2+), and Mn(2+) were coordinated to COO(-) of Glu by a bidentate state as well as Ca(2+), while coordination of COO(-) with Mg(2+) was a pseudobridging state with six-coordinate geometry. These SPR and FT-IR results taken together reveal that metal ions with seven-coordinate geometry in the EF-hands induce a large conformational change in recoverin so that it extrudes the myristoyl group, while metal ions with six-coordinate geometry in the EF-hands such as Mg(2+) remain the myristoyl group sequestered in recoverin.[1]References
- How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies. Ozawa, T., Fukuda, M., Nara, M., Nakamura, A., Komine, Y., Kohama, K., Umezawa, Y. Biochemistry (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg