The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

RCVRN  -  recoverin

Bos taurus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of RCV1


High impact information on RCV1

  • Recoverin, a recently discovered member of the EF hand superfamily, serves as a calcium sensor in vision [4].
  • Ca2+ binding to myristoylated, but not unmyristoylated, recoverin induces its translocation to bilayer membranes, indicating that the myristoyl group is essential to the read-out of calcium signals (calcium-myristoyl switch) [5].
  • On the basis of these studies, Ca2+ is suggested to play a central role in photorecovery and light adaptation, not only by regulating guanylate cyclase, possibly through recoverin, but also by modulating the cGMP-gated channel through calmodulin interaction with the 240K protein [6].
  • Recoverin, a calcium ion (Ca2+)-binding protein of vertebrate photoreceptors, binds to photoreceptor membranes when the Ca2+ concentration is greater than 1 micromolar [7].
  • These results suggest that the hydrophobic NH2-terminus is constrained in Ca(2+)-free recoverin and liberated by Ca2+ binding [7].

Biological context of RCV1

  • Binding of Ca(2+) to recoverin is a sequential process, wherein EF-hand 3 is occupied first followed by the filling of EF-hand 2 [8].
  • The N-terminal myristoyl residue of Rv enhances the inhibitory effect of Rv and introduces cooperativity to the Ca(2+)-dependent inhibition of rhodopsin phosphorylation [9].
  • To elucidate the differential impact of the N-terminal myristoylation as well as occupation of the two Ca2+ binding sites on recoverin structure and function, we have investigated a non-myristoylated E85Q mutant exhibiting virtually no Ca2+ binding to EF-2 [10].
  • Recoverin is a Ca2+-regulated signal transduction modulator found in vertebrate retina that has been shown to undergo dramatic conformational changes upon Ca2+ binding to its two functional EF-hand motifs [10].
  • Heterogeneous acylation was detected at the NH2 terminus of bovine retinal recoverin [11].

Anatomical context of RCV1


Associations of RCV1 with chemical compounds


Physical interactions of RCV1


Enzymatic interactions of RCV1


Regulatory relationships of RCV1

  • Recoverin is a calcium sensor that regulates rhodopsin phosphorylation in a calcium-dependent manner [17].
  • The available data suggest that the functions of recoverin myristoylation in the living rod are to induce a sharp Ca2+ dependence of rhodopsin kinase inhibition and to bring this dependence into the rod's physiological Ca2+ concentration range [18].
  • The finding that retinal recoverin is myristoylated at its amino terminus led us to coexpress the recombinant protein and N-myristoyltransferase (EC [1].

Other interactions of RCV1

  • The importance of the Rv/RK interaction was further characterized [9].
  • GCAP-2 differs from recoverin in that the calcium ion binds to EF-4 in addition to EF-2 and EF-3 [19].
  • The results suggest that GCIP is a Ca2+-binding protein of the GCAP/recoverin subfamily [20].

Analytical, diagnostic and therapeutic context of RCV1


  1. Cloning, expression, and crystallization of recoverin, a calcium sensor in vision. Ray, S., Zozulya, S., Niemi, G.A., Flaherty, K.M., Brolley, D., Dizhoor, A.M., McKay, D.B., Hurley, J., Stryer, L. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  2. Reversible staining and peptide mapping of proteins transferred to nitrocellulose after separation by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Salinovich, O., Montelaro, R.C. Anal. Biochem. (1986) [Pubmed]
  3. Inhibition of rhodopsin phosphorylation by non-myristoylated recombinant recoverin. Kawamura, S., Cox, J.A., Nef, P. Biochem. Biophys. Res. Commun. (1994) [Pubmed]
  4. Three-dimensional structure of recoverin, a calcium sensor in vision. Flaherty, K.M., Zozulya, S., Stryer, L., McKay, D.B. Cell (1993) [Pubmed]
  5. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Tanaka, T., Ames, J.B., Harvey, T.S., Stryer, L., Ikura, M. Nature (1995) [Pubmed]
  6. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Hsu, Y.T., Molday, R.S. Nature (1993) [Pubmed]
  7. Role of the acylated amino terminus of recoverin in Ca(2+)-dependent membrane interaction. Dizhoor, A.M., Chen, C.K., Olshevskaya, E., Sinelnikova, V.V., Phillipov, P., Hurley, J.B. Science (1993) [Pubmed]
  8. Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites. Senin, I.I., Fischer, T., Komolov, K.E., Zinchenko, D.V., Philippov, P.P., Koch, K.W. J. Biol. Chem. (2002) [Pubmed]
  9. Ca(2+)-dependent interaction of recoverin with rhodopsin kinase. Chen, C.K., Inglese, J., Lefkowitz, R.J., Hurley, J.B. J. Biol. Chem. (1995) [Pubmed]
  10. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin. Weiergräber, O.H., Senin, I.I., Philippov, P.P., Granzin, J., Koch, K.W. J. Biol. Chem. (2003) [Pubmed]
  11. The NH2 terminus of retinal recoverin is acylated by a small family of fatty acids. Dizhoor, A.M., Ericsson, L.H., Johnson, R.S., Kumar, S., Olshevskaya, E., Zozulya, S., Neubert, T.A., Stryer, L., Hurley, J.B., Walsh, K.A. J. Biol. Chem. (1992) [Pubmed]
  12. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Dizhoor, A.M., Ray, S., Kumar, S., Niemi, G., Spencer, M., Brolley, D., Walsh, K.A., Philipov, P.P., Hurley, J.B., Stryer, L. Science (1991) [Pubmed]
  13. Recoverin and rhodopsin kinase activity in detergent-resistant membrane rafts from rod outer segments. Senin, I.I., Höppner-Heitmann, D., Polkovnikova, O.O., Churumova, V.A., Tikhomirova, N.K., Philippov, P.P., Koch, K.W. J. Biol. Chem. (2004) [Pubmed]
  14. Phosphorylation of photolyzed rhodopsin is calcium-insensitive in retina permeabilized by alpha-toxin. Otto-Bruc, A.E., Fariss, R.N., Van Hooser, J.P., Palczewski, K. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  15. Role of heterogeneous N-terminal acylation of recoverin in rhodopsin phosphorylation. Sanada, K., Kokame, K., Yoshizawa, T., Takao, T., Shimonishi, Y., Fukada, Y. J. Biol. Chem. (1995) [Pubmed]
  16. Recoverin binds exclusively to an amphipathic peptide at the N terminus of rhodopsin kinase, inhibiting rhodopsin phosphorylation without affecting catalytic activity of the kinase. Higgins, M.K., Oprian, D.D., Schertler, G.F. J. Biol. Chem. (2006) [Pubmed]
  17. Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors. De Castro, E., Nef, S., Fiumelli, H., Lenz, S.E., Kawamura, S., Nef, P. Biochem. Biophys. Res. Commun. (1995) [Pubmed]
  18. Rhodopsin kinase inhibition by recoverin. Function of recoverin myristoylation. Calvert, P.D., Klenchin, V.A., Bownds, M.D. J. Biol. Chem. (1995) [Pubmed]
  19. Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases. Ames, J.B., Dizhoor, A.M., Ikura, M., Palczewski, K., Stryer, L. J. Biol. Chem. (1999) [Pubmed]
  20. Guanylate-cyclase-inhibitory protein is a frog retinal Ca2+-binding protein related to mammalian guanylate-cyclase-activating proteins. Li, N., Fariss, R.N., Zhang, K., Otto-Bruc, A., Haeseleer, F., Bronson, D., Qin, N., Yamazaki, A., Subbaraya, I., Milam, A.H., Palczewski, K., Baehr, W. Eur. J. Biochem. (1998) [Pubmed]
  21. Recoverin is a zinc-binding protein. Permyakov, S.E., Cherskaya, A.M., Wasserman, L.A., Khokhlova, T.I., Senin, I.I., Zargarov, A.A., Zinchenko, D.V., Zernii, E.Y., Lipkin, V.M., Philippov, P.P., Uversky, V.N., Permyakov, E.A. J. Proteome Res. (2003) [Pubmed]
  22. How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies. Ozawa, T., Fukuda, M., Nara, M., Nakamura, A., Komine, Y., Kohama, K., Umezawa, Y. Biochemistry (2000) [Pubmed]
  23. Purification of rhodopsin kinase by recoverin affinity chromatography. Chen, C.K., Hurley, J.B. Meth. Enzymol. (2000) [Pubmed]
  24. The effect of recoverin-like calcium-binding proteins on the photoresponse of retinal rods. Gray-Keller, M.P., Polans, A.S., Palczewski, K., Detwiler, P.B. Neuron (1993) [Pubmed]
WikiGenes - Universities