The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Simultaneous ethanol and bacterial ice nuclei production from sugar beet molasses by a Zymomonas mobilis CP4 mutant expressing the inaZ gene of Pseudomonas syringae in continuous culture.

AIM: The aim of this work was to construct a Zymomonas mobilis mutant capable of simultaneous ethanol and ice nuclei production from agricultural by-product such as sugar beet molasses, in steady-state continuous culture. METHODS AND RESULTS: A sucrose-hypertolerant mutant of Z. mobilis strain CP4, named suc40, capable of growing on 40% (w/v) sucrose medium was isolated following N-methyl-N'-nitro-N-nitrosoguanidine treatment. Plasmid pDS3154 carrying the inaZ gene of Pseudomonas syringae was conjugally transferred and expressed in suc40. The potential for simultaneous ethanol and bacterial ice nuclei production was assessed in steady-state continuous cultures over a range of dilution rates from 0.04 to 0.13 h(-1). In addition, the fatty acid and phospholipid profile of the three strains was also investigated. Ethanol production up to 43 g l(-1) was achieved at dilution rates below 0.10 h(-1) in sugar beet molasses. Ice nucleation activity gradually increased with increasing dilution rate and the greatest activity, -3.4 log (ice nuclei per cell), was observed at the highest dilution rate (0.13 h(-1)). Both mutant strains displayed a different fatty acid and phospholipid profile compared with the wild-type strain. CONCLUSIONS: The ability of the mutant and recombinant plasmid-containing strains to grow on high sugar concentrations and in high osmotic pressure environments (molasses) can be attributed to their phospholipid and fatty acid contents. SIGNIFICANCE AND IMPACT OF THE STUDY: Taking into account that sugar beet molasses is a low cost agricultural by-product, the simultaneous ethanol and bacterial ice nucleation production achieved under the studied conditions is considered very promising for industrial applications.[1]

References

  1. Simultaneous ethanol and bacterial ice nuclei production from sugar beet molasses by a Zymomonas mobilis CP4 mutant expressing the inaZ gene of Pseudomonas syringae in continuous culture. Savvides, A.L., Kallimanis, A., Varsaki, A., Koukkou, A.I., Drainas, C., Typas, M.A., Karagouni, A.D. J. Appl. Microbiol. (2000) [Pubmed]
 
WikiGenes - Universities