The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Dopamine transporter and catechol-O-methyltransferase activities are required for the toxicity of 1-(3',4'-dihydroxybenzyl)-1,2,3, 4-tetrahydroisoquinoline.

1-(3',4'-Dihydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline [3', 4'DHBnTIQ (1)] is an endogenous parkinsonism-inducing substance. It is taken up into dopaminergic neurons via the dopamine transporter, inhibits mitochondrial respiration, and induces parkinsonism in mice. We synthesized four derivatives [aromatized, N-methylated, N-methyl-aromatized, and O-methylated (2-5, respectively)] and studied the cellular uptake and cytotoxicity of 1-5, as well as the metabolism of 1. All except the O-methyl derivative (5) were specifically taken up by the dopamine transporter, but 1 was taken up most efficiently. Relative to 1, oxidation reduced v(max), N-methylation markedly increased K(m), and O-methylation eliminated the uptake activity. The cytotoxicity of 1-5 was examined in a mesencephalic cell primary culture. Compound 1 reduced cell viability by nearly 80% at 100 microM, but the other compounds had little or no effect on cell viability. In vivo and in vitro studies revealed that 1 was O-methylated by soluble catechol-O-methyltransferase (COMT). Aromatization and N-methylation of 1 were not observed. We found that dopamine transporter inhibitors and a COMT inhibitor each blocked the cytotoxicity of 1, indicating that uptake and O-methylation are both necessary for neurotoxicity. Thus, we consider that 1 is taken up into dopaminergic neurons via the dopamine transporter and then converted by COMT to 5, which has cytotoxic and parkinsonism-inducing activities.[1]

References

 
WikiGenes - Universities