Oxygen cost during exercise in simulated subgravity environments.
Oxygen cost (VO2) and heart rate (HR) were determined during treadmill walking in simulated subgravity environments. The long axis of the subject's body was suspended parallel to the floor in a slow rotation room with feet aligned on the surface of a treadmill mounted 90 degrees on the wall. Without rotation, the subjects were virtually weightless against the treadmill; with centrifugation, environments of 0.25, 0.5 and 1 G were simulated. VO2 (open circuit) and HR (ECG) were measured during the 5th minute of walking at 3.2, 4.7 and 6.1 km/h. Similar measurements were also determined during walking at 1/2-G using the inclined plane technique. VO2 per unit mass and HR were significantly reduced in all subgravity environments. However, net VO2 per unit weight carried and, therefore, mechanical efficiency was found to be independent of gravity. This supports the idea that the most probable cause for the decreased O2 cost with reduced gravity is less body weight carried.[1]References
- Oxygen cost during exercise in simulated subgravity environments. Fox, E.L., Bartels, R.L., Chaloupka, E.C., Klinzing, J.E., Hoche, J. Aviation, space, and environmental medicine. (1975) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg