The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Chronic exercise alters caudal hypothalamic regulation of the cardiovascular system in hypertensive rats.

Previous studies have documented a deficit in the GABA neurotransmitter system within the caudal hypothalamus (CH) of spontaneously hypertensive rats (SHR). The reduction in inhibitory influence on this cardiovascular excitatory brain region is associated with an increased neuronal activity and resting blood pressure. The purpose of this study was to determine if chronic treadmill and wheel-running activities alter the ability of the CH to regulate cardiovascular function. SHR were exercised on a treadmill (5 times/wk) at moderate intensity or allowed free access to running wheels (7 days/wk) for a period of 10 wk. Resting blood pressures were obtained before and after the exercise training periods. After the exercise period, rats were anesthetized and microinjection experiments were performed. Treadmill-trained SHR exhibited a significantly blunted developmental rise in resting blood pressure after 10 wk of exercise. A similar yet less marked effect was observed in wheel-run rats. Microinjection of the GABA synthesis inhibitor 3-mercaptopropionic acid (3-MP) into the CH of nonexercised SHR did not produce any change in arterial pressure. In contrast, microinjection of 3-MP into the CH produced significant increases in blood pressure and heart rate in exercised SHR. These results demonstrate that exercise training can alter CH cardiovascular regulation in hypertensive rats and therefore may play a role in increasing cardiovascular health.[1]


  1. Chronic exercise alters caudal hypothalamic regulation of the cardiovascular system in hypertensive rats. Kramer, J.M., Beatty, J.A., Little, H.R., Plowey, E.D., Waldrop, T.G. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2001) [Pubmed]
WikiGenes - Universities