Chemostat study of xylitol production by Candida guilliermondii.
The mechanism of production of xylitol from xylose by Candida guilliermondii was studied using chemostat cultures and enzymatic assays. The maximum dilution rate in aerobic conditions was 0.34 1/h. No xylitol was produced. Under oxygen-limited conditions xylose uptake was impaired and glycerol accumulated but no xylitol was detected. Under transient oxygen limitation, caused by a gradual decrease in the agitation rate, onset of xylitol, acetate and residual xylose accumulation occurred simultaneously when qo2 dropped below 25 mmol/C-mmol cell dry weight (CDW) per hour. Ethanol and glycerol started to accumulate when qo2 dropped below 20 mmol/C-mmol CDW per hour. The highest in vitro enzyme activities were found at the lowest dilution rate studied (0.091/h) under aerobic conditions. The amount of active enzymes or cofactor availability did not limit the rate of xylose consumption. Our results confirm that a surplus of NADH during transient oxygen limitation inhibited the activity of xylitol dehydrogenase which resulted in xylitol accumulation. Phosphoglucoisomerase (E.C. 5.3.1.9.) and glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) activities suggest re-shuttling of the metabolites into the pentose phosphate pathway.[1]References
- Chemostat study of xylitol production by Candida guilliermondii. Granström, T., Ojamo, H., Leisola, M. Appl. Microbiol. Biotechnol. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg