The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AC1NSSYJ     heptane-1,3,4,5,7-pentol

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of xylitol


Psychiatry related information on xylitol


High impact information on xylitol

  • This conclusion is supported by the finding that chronic xylose feeding, despite being associated with intracellular xylitol accumulation, does not result in alterations in AR mRNA levels, at least in the kidney [11].
  • Transient expression of an AtPLT5-green fluorescent protein fusion in plant cells and functional analyses of the AtPLT5 protein in yeast and Xenopus oocytes demonstrate that AtPLT5 is located in the plasma membrane and characterize this protein as a broad-spectrum H+-symporter for linear polyols, such as sorbitol, xylitol, erythritol, or glycerol [12].
  • We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro [13].
  • We determined here the effects of two histone deacetylase inhibitors, sodium butyrate and the stable prodrug xylitol butyrate derivative (D1), on a t(8;21)-positive cell line (Kasumi-1) as well as primary AML blasts [14].
  • Similarly, xylitol, an NADH-generating compound, enhanced hepatocyte ROS production and decreased viability [15].

Chemical compound and disease context of xylitol


Biological context of xylitol


Anatomical context of xylitol

  • If xylitol reduces the growth of S. pneumoniae in the nasopharynx, it could also reduce the carriage of this pathogen and thus have clinical significance in the prevention of pneumococcal diseases [25].
  • The exposure of either epithelial cells or pneumococci or both to 5% xylitol reduced the adherence of pneumococci [26].
  • The effect of long-term consumption of refined xylitol on the natural populations of S. mutans in the human oral cavity has been investigated [27].
  • Rats adapted to dietary xylitol did not have detectable levels of C. perfringens in the gastrointestinal tract [28].
  • These non-adapted rats had significantly higher levels of intestinal tract Clostridium perfringens (10(6)--10(11) organisms per gram intestinal contents) than did control rats fed a xylitol-free cornstarch diet (0-10(4) organisms per gram) [28].

Associations of xylitol with other chemical compounds


Gene context of xylitol

  • These results suggest that the expression of MIOX is up-regulated by a positive feedback mechanism where xylitol, one of the products of MI catabolism via the glucuronate-xylulose pathway, induces an overexpression of MIOX [4].
  • In recombinant strains from which the GRE3 gene was deleted, xylitol formation decreased twofold [33].
  • The Pichia stipitis CBS 6054 genes XYL1 and XYL2 encoding xylose reductase and xylitol dehydrogenase were cloned into S. cerevisiae [34].
  • However, overexpression of XKS1 shifted polyol formation from xylitol to arabinitol [35].
  • The glpF protein allowed the rapid efflux of preequilibrated xylitol [36].

Analytical, diagnostic and therapeutic context of xylitol

  • Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control [13].
  • Xylitol has been suggested as a potentially useful sweetener in the diabetic diet [30].
  • A detailed quantitative study of the urinary organic acid excretion by means of gas chromatography/mass spectrometry showed that there was an abnormal glycolic aciduria and tetronic aciduria associated with xylitol infusion, but not with glucose infusion [37].
  • Differential peptide mapping between D-xylose isomerase, which has previously been treated with diethyl pyrocarbonate in the presence or absence of xylitol plus Mg2+, allowed specific isolation and sequencing of a peptide containing this active-site histidine [38].
  • An additional control group was fed diet SSP 20/5 supplemented with 5% xylitol [39].


  1. Metabolism of xylitol and glucose in rats bearing hepatocellular. Sato, J., Wang, Y.M., van Eys, J. Cancer Res. (1981) [Pubmed]
  2. Nutritional significance of fructose and sugar alcohols. Wang, Y.M., van Eys, J. Annu. Rev. Nutr. (1981) [Pubmed]
  3. Sugar alcohols as bulk sweeteners. Dills, W.L. Annu. Rev. Nutr. (1989) [Pubmed]
  4. Up-regulation of human myo-inositol oxygenase by hyperosmotic stress in renal proximal tubular epithelial cells. Prabhu, K.S., Arner, R.J., Vunta, H., Reddy, C.C. J. Biol. Chem. (2005) [Pubmed]
  5. Structures of D-xylose isomerase from Arthrobacter strain B3728 containing the inhibitors xylitol and D-sorbitol at 2.5 A and 2.3 A resolution, respectively. Henrick, K., Collyer, C.A., Blow, D.M. J. Mol. Biol. (1989) [Pubmed]
  6. The optimum time to initiate habitual xylitol gum-chewing for obtaining long-term caries prevention. Hujoel, P.P., Mäkinen, K.K., Bennett, C.A., Isotupa, K.P., Isokangas, P.J., Allen, P., Mäkinen, P.L. J. Dent. Res. (1999) [Pubmed]
  7. Acute hepatic failure and coagulopathy associated with xylitol ingestion in eight dogs. Dunayer, E.K., Gwaltney-Brant, S.M. J. Am. Vet. Med. Assoc. (2006) [Pubmed]
  8. Effect on plaque growth of xylitol and sucrose-containing chewing gums. Plüss, E.M. Journal of clinical periodontology. (1978) [Pubmed]
  9. Development of a xylitol biosensor composed of xylitol dehydrogenase and diaphorase. Takamizawa, K., Uchida, S., Hatsu, M., Suzuki, T., Kawai, K. Can. J. Microbiol. (2000) [Pubmed]
  10. Ethylene glycol intoxication and xylitol infusion--metabolic steps of oxalate-induced acute renal failure. Meier, M., Nitschke, M., Perras, B., Steinhoff, J. Clin. Nephrol. (2005) [Pubmed]
  11. Effects of galactose feeding on aldose reductase gene expression. Wu, R.R., Lyons, P.A., Wang, A., Sainsbury, A.J., Chung, S., Palmer, T.N. J. Clin. Invest. (1993) [Pubmed]
  12. Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-Symport of numerous substrates, including myo-inositol, glycerol, and ribose. Klepek, Y.S., Geiger, D., Stadler, R., Klebl, F., Landouar-Arsivaud, L., Lemoine, R., Hedrich, R., Sauer, N. Plant Cell (2005) [Pubmed]
  13. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing. Zabner, J., Seiler, M.P., Launspach, J.L., Karp, P.H., Kearney, W.R., Look, D.C., Smith, J.J., Welsh, M.J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  14. Butyrates, as a single drug, induce histone acetylation and granulocytic maturation: possible selectivity on core binding factor-acute myeloid leukemia blasts. Gozzini, A., Rovida, E., Dello Sbarba, P., Galimberti, S., Santini, V., Galimbert, S. Cancer Res. (2003) [Pubmed]
  15. Acute and chronic ethanol increases reactive oxygen species generation and decreases viability in fresh, isolated rat hepatocytes. Bailey, S.M., Cunningham, C.C. Hepatology (1998) [Pubmed]
  16. Growth of Klebsiella aerogenes on xylitol: implications for bacterial enzyme evolution. Inderlied, C.B., Mortlock, R.P. J. Mol. Evol. (1977) [Pubmed]
  17. Streptococcus mutans: Fructose Transport, Xylitol Resistance, and Virulence. Tanzer, J.M., Thompson, A., Wen, Z.T., Burne, R.A. J. Dent. Res. (2006) [Pubmed]
  18. Assessment of the effects of dentifrices on plaque acidogenesis via intra-oral measurement of plaque acids. Simone, A.J., Gulya, M., Mukerjee, C., Kashuba, A., Polefka, T.G. J. Dent. Res. (1992) [Pubmed]
  19. Production of D- and L-xylulose by mutants of Klebsiella pneumoniae and Erwinia uredovora. Doten, R.C., Mortlock, R.P. Appl. Environ. Microbiol. (1985) [Pubmed]
  20. Xylitol infusion and oxalate formation in rabbits. Oshinsky, R.J., Wang, Y.M., Eys, J.V. J. Nutr. (1977) [Pubmed]
  21. Phosphorylation of chondroitin sulfate in proteoglycans from the swarm rat chondrosarcoma. Oegema, T.R., Kraft, E.L., Jourdian, G.W., Van Valen, T.R. J. Biol. Chem. (1984) [Pubmed]
  22. X-ray crystal structure of D-xylose isomerase at 4-A resolution. Carrell, H.L., Rubin, B.H., Hurley, T.J., Glusker, J.P. J. Biol. Chem. (1984) [Pubmed]
  23. Transcriptional glucose signaling through the glucose response element is mediated by the pentose phosphate pathway. Doiron, B., Cuif, M.H., Chen, R., Kahn, A. J. Biol. Chem. (1996) [Pubmed]
  24. Effects of xylitol on gastric emptying and food intake. Shafer, R.B., Levine, A.S., Marlette, J.M., Morley, J.E. Am. J. Clin. Nutr. (1987) [Pubmed]
  25. Effect of xylitol on growth of nasopharyngeal bacteria in vitro. Kontiokari, T., Uhari, M., Koskela, M. Antimicrob. Agents Chemother. (1995) [Pubmed]
  26. Antiadhesive effects of xylitol on otopathogenic bacteria. Kontiokari, T., Uhari, M., Koskela, M. J. Antimicrob. Chemother. (1998) [Pubmed]
  27. Selection for Streptococcus mutans with an altered xylitol transport capacity in chronic xylitol consumers. Trahan, L., Mouton, C. J. Dent. Res. (1987) [Pubmed]
  28. Incidence of increased numbers of Clostridium perfringens in the intestinal tract of rats fed xylitol. Wekell, M.M., Hartman, W.J., Dong, F.M. J. Nutr. (1980) [Pubmed]
  29. Redox interactions between catalase and alcohol dehydrogenase pathways of ethanol metabolism in the perfused rat liver. Handler, J.A., Thurman, R.G. J. Biol. Chem. (1990) [Pubmed]
  30. The effects of equal caloric amounts of xylitol, sucrose and starch on insulin requirements and blood glucose levels in insulin-dependent diabetics. Hassinger, W., Sauer, G., Cordes, U., Krause, U., Beyer, J., Baessler, K.H. Diabetologia (1981) [Pubmed]
  31. Xylitol: stimulation of insulin and inhibition of glucagon responses to arginine in man. Seino, Y., Taminato, T., Inoue, Y., Goto, Y., Ikeda, M. J. Clin. Endocrinol. Metab. (1976) [Pubmed]
  32. Metabolic response to lactitol and xylitol in healthy men. Natah, S.S., Hussien, K.R., Tuominen, J.A., Koivisto, V.A. Am. J. Clin. Nutr. (1997) [Pubmed]
  33. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Träff, K.L., Otero Cordero, R.R., van Zyl, W.H., Hahn-Hägerdal, B. Appl. Environ. Microbiol. (2001) [Pubmed]
  34. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Walfridsson, M., Hallborn, J., Penttilä, M., Keränen, S., Hahn-Hägerdal, B. Appl. Environ. Microbiol. (1995) [Pubmed]
  35. Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Eliasson, A., Boles, E., Johansson, B., Osterberg, M., Thevelein, J.M., Spencer-Martins, I., Juhnke, H., Hahn-Hägerdal, B. Appl. Microbiol. Biotechnol. (2000) [Pubmed]
  36. Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. Heller, K.B., Lin, E.C., Wilson, T.H. J. Bacteriol. (1980) [Pubmed]
  37. Metabolic investigations after xylitol infusion in human subjects. Hauschildt, S., Chalmers, R.A., Lawson, A.M., Schultis, K., Watts, R.W. Am. J. Clin. Nutr. (1976) [Pubmed]
  38. Single active-site histidine in D-xylose isomerase from Streptomyces violaceoruber. Identification by chemical derivatization and peptide mapping. Vangrysperre, W., Ampe, C., Kersters-Hilderson, H., Tempst, P. Biochem. J. (1989) [Pubmed]
  39. The anti-cariogenic potential of xylitol in comparison with sodium fluoride in rat caries experiments. Havenaar, R. J. Dent. Res. (1984) [Pubmed]
WikiGenes - Universities