The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Reactive oxygen species stimulate VEGF production from C(2)C(12) skeletal myotubes through a PI3K/Akt pathway.

Vascular endothelial growth factor (VEGF) is a potent angiogenic stimulus, the expression of which increases in skeletal muscle after exercise. Because exercise is also accompanied by increased intramuscular reactive oxygen species (ROS) generation, we tested the hypothesis that ROS stimulate VEGF production from skeletal myotubes. Differentiated C(2)C(12) skeletal myotubes exposed to ROS-producing agents exhibited a concentration-dependent increase in VEGF production, whereas undifferentiated myoblasts did not respond to oxidants. Moreover, conditioned medium from ROS-treated myotubes increased the bovine lung microvascular cell proliferation rate. To study the mechanism(s) involved in the stimulation of VEGF production by ROS, myotubes were pretreated with a selective phosphatidylinositol 3-kinase ( PI3K) inhibitor, LY-294002, before being exposed to hydrogen peroxide or pyrogallol. LY-294002 attenuated both Akt phosphorylation and VEGF production. In addition, oxidants increased nuclear factor-kappaB-dependent promoter activity in transiently transfected myotubes; however, pretreatment with the pharmacological inhibitor of nuclear factor-kappaB, diethyldithiocarbamate, did not affect the oxidant-stimulated VEGF release. We conclude that ROS induce VEGF release from myotubes via a PI3K/Akt-dependent pathway.[1]

References

  1. Reactive oxygen species stimulate VEGF production from C(2)C(12) skeletal myotubes through a PI3K/Akt pathway. Kosmidou, I., Xagorari, A., Roussos, C., Papapetropoulos, A. Am. J. Physiol. Lung Cell Mol. Physiol. (2001) [Pubmed]
 
WikiGenes - Universities