The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

pyrogallol     benzene-1,2,3-triol

Synonyms: PYROP, Piral, Benzenetriol, fourrine 85, fourrine PG, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of pyrogallol

 

Psychiatry related information on pyrogallol

 

High impact information on pyrogallol

 

Chemical compound and disease context of pyrogallol

 

Biological context of pyrogallol

  • These reactions were a typical peroxidative reaction (oxidation of pyrogallol to purpurogallin) and three characteristic P-450 reactions (aliphatic hydroxylation, aromatic hydroxylation, and olefinic epoxidation) [18].
  • Catechin, chlorogenic acid, gallic acid, pyrogallol and tannic acid suppressed the formation of mutagenic nitrosation products [19].
  • Tin(IV) chloride-chiral pyrogallol derivatives as new Lewis acid-assisted chiral Brønsted acids for enantioselective polyene cyclization [20].
  • Similarly, treatment of CMEC with pyrogallol (0.3-3 mM), a superoxide anion (O(2)(-)) generator, also increased CMEC growth while spermine NONOate (SpNO), a NO donor, significantly reduced cell growth [21].
  • Pyrogallol reduced the concentrations of SAM in a similar manner in both areas and increased SAH much more in the cortex than in the striatum; these effects corresponded to that on O-methylation in terms of dose-effect relationships, indicating that there is no compartmentation of SAM with respect to the methylation process in which it is used [22].
 

Anatomical context of pyrogallol

 

Associations of pyrogallol with other chemical compounds

 

Gene context of pyrogallol

 

Analytical, diagnostic and therapeutic context of pyrogallol

  • In contrast, supplementation of the perfusion medium of hypoxically perfused kidneys with the prooxidant compounds H2O2 or pyrogallol caused a significant reduction of Epo synthesis [38].
  • We evaluated the pyrogallol red-molybdate(IV) method for quantification of urinary protein as a screening procedure for microalbuminuria by determining the assay's sensitivity and specificity at different concentrations of urinary albumin as measured by a comparison laser-nephelometric immunoassay [39].
  • The predominant fermentation product from tannic acid breakdown was pyrogallol, as detected by high-performance liquid chromatography and mass spectrometry [40].
  • The late phase of relaxation was prolonged after increase in the period of nerve stimulation and the duration of this phase was further prolonged after treatment with pyrogallol [41].
  • 3. Pyrogallol-induced emesis was completely prevented by surgical abdominal vagotomy [4].

References

  1. Sensitization to the generalized Shwartzman reaction by catechol-O-methyltransferase inhibitors. Latour, J.G., Láger-Gauthier, C. Am. J. Pathol. (1978) [Pubmed]
  2. Deoxygenation of polyhydroxybenzenes: an alternative strategy for the benzene-free synthesis of aromatic chemicals. Hansen, C.A., Frost, J.W. J. Am. Chem. Soc. (2002) [Pubmed]
  3. A convenient approach for evaluating the toxicity profiles of in vitro neuroprotective alkylaminophenol derivatives. Urios, A., Largeron, M., Fleury, M.B., Blanco, M. Free Radic. Biol. Med. (2006) [Pubmed]
  4. Induction of emesis in Suncus murinus by pyrogallol, a generator of free radicals. Torii, Y., Saito, H., Matsuki, N. Br. J. Pharmacol. (1994) [Pubmed]
  5. Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1. Tao, Y., Fishman, A., Bentley, W.E., Wood, T.K. Appl. Environ. Microbiol. (2004) [Pubmed]
  6. The effect of pyrogallol on the motor activity of decerebrate and spinal cats. Bayev, K.V., Dobrovol'sky, Y.N. Neuroscience (1978) [Pubmed]
  7. Biosensor for the determination of phenols based on cross-linked enzyme crystals (CLEC) of laccase. Roy, J.J., Abraham, T.E., Abhijith, K.S., Kumar, P.V., Thakur, M.S. Biosensors & bioelectronics. (2005) [Pubmed]
  8. Superoxide enhances interleukin 1beta-mediated transcription of the hepatocyte-inducible nitric oxide synthase gene. Kuo, P.C., Abe, K., Schroeder, R.A. Gastroenterology (2000) [Pubmed]
  9. Interleukin 1-induced production of nitric oxide inhibits benzenetriol-mediated oxidative injury in rat hepatocytes. Kuo, P.C., Abe, K.Y. Gastroenterology (1995) [Pubmed]
  10. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. Bourne, Y., Taylor, P., Radić, Z., Marchot, P. EMBO J. (2003) [Pubmed]
  11. Galloylglucoses of low molecular weight as mordant in electron microscopy. II. The moiety and functional groups possibly involved in the mordanting effect. Simionescu, N., Simionescu, M. J. Cell Biol. (1976) [Pubmed]
  12. Selective involvement of superoxide anion, but not downstream compounds hydrogen peroxide and peroxynitrite, in tumor necrosis factor-alpha-induced apoptosis of rat mesangial cells. Moreno-Manzano, V., Ishikawa, Y., Lucio-Cazana, J., Kitamura, M. J. Biol. Chem. (2000) [Pubmed]
  13. Characterization of the pyrogallol-phloroglucinol isomerase of Eubacterium oxidoreducens. Krumholz, L.R., Bryant, M.P. J. Bacteriol. (1988) [Pubmed]
  14. Increase in doxorubicin cytotoxicity by carvedilol inhibition of P-glycoprotein activity. Jonsson, O., Behnam-Motlagh, P., Persson, M., Henriksson, R., Grankvist, K. Biochem. Pharmacol. (1999) [Pubmed]
  15. Comparison of disease in calves dosed orally with oak or commercial tannic acid. Plumlee, K.H., Johnson, B., Galey, F.D. J. Vet. Diagn. Invest. (1998) [Pubmed]
  16. Screening for Bence Jones proteinuria using the coomassie Brilliant Blue and pyrogallol red protein assay values. Williams, K.M., Marshall, T., Abbott, N.J., Williams, J. Biochem. Soc. Trans. (1997) [Pubmed]
  17. Influence of Steroidal enzyme inducers on the toxicity of pyrogallol, pargyline and nialamide. Taché, J., Taché, Y., Kourounakis, P. Endocrinol. Exp. (1977) [Pubmed]
  18. Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate. McCarthy, M.B., White, R.E. J. Biol. Chem. (1983) [Pubmed]
  19. Inhibitory effects of phenolics, teas and saliva on the formation of mutagenic nitrosation products of salted fish. Stich, H.F., Chan, P.K., Rosin, M.P. Int. J. Cancer (1982) [Pubmed]
  20. Tin(IV) chloride-chiral pyrogallol derivatives as new Lewis acid-assisted chiral Brønsted acids for enantioselective polyene cyclization. Kumazawa, K., Ishihara, K., Yamamoto, H. Org. Lett. (2004) [Pubmed]
  21. Nitric oxide synthase and NAD(P)H oxidase modulate coronary endothelial cell growth. Bayraktutan, U. J. Mol. Cell. Cardiol. (2004) [Pubmed]
  22. On the role of O-methylation in the metabolism of S-adenosylmethionine in rat brain. Waldmeier, P.C., Feldtrauer, J.J. Biochem. Pharmacol. (1987) [Pubmed]
  23. Deficiency of superoxide dismutase in endemic goiter tissue. Sugawara, M., Kita, T., Lee, E.D., Takamatsu, J., Hagen, G.A., Kuma, K., Medeiros-Neto, G.A. J. Clin. Endocrinol. Metab. (1988) [Pubmed]
  24. Presence of carotenoids in the erythrocyte membranes of carotenemic and noncarotenemic individuals. Mathews-Roth, M.M. Clin. Chem. (1975) [Pubmed]
  25. Production of interleukin-6 by skeletal myotubes: role of reactive oxygen species. Kosmidou, I., Vassilakopoulos, T., Xagorari, A., Zakynthinos, S., Papapetropoulos, A., Roussos, C. Am. J. Respir. Cell Mol. Biol. (2002) [Pubmed]
  26. Molsidomine inhibits the chemoattractant-induced respiratory burst in human neutrophils via a no-independent mechanism. Ervens, J., Seifert, R. Biochem. Pharmacol. (1992) [Pubmed]
  27. Reactive oxygen species stimulate VEGF production from C(2)C(12) skeletal myotubes through a PI3K/Akt pathway. Kosmidou, I., Xagorari, A., Roussos, C., Papapetropoulos, A. Am. J. Physiol. Lung Cell Mol. Physiol. (2001) [Pubmed]
  28. Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Moran, J.F., Klucas, R.V., Grayer, R.J., Abian, J., Becana, M. Free Radic. Biol. Med. (1997) [Pubmed]
  29. Antisense suppression of l-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis. Gatzek, S., Wheeler, G.L., Smirnoff, N. Plant J. (2002) [Pubmed]
  30. Comparison of four indirect methods for fluid superoxide dismutase activities. DiSilvestro, R.A., David, C., David, E.A. Free Radic. Biol. Med. (1990) [Pubmed]
  31. The catalase-peroxidase of Synechococcus PCC 7942: purification, nucleotide sequence analysis and expression in Escherichia coli. Mutsuda, M., Ishikawa, T., Takeda, T., Shigeoka, S. Biochem. J. (1996) [Pubmed]
  32. Protein concentration by precipitation with pyrogallol red prior to electrophoresis. Marshall, T., Abbott, N.J., Fox, P., Williams, K.M. Electrophoresis (1995) [Pubmed]
  33. Oxygen free radicals enhance the nitric oxide-induced covalent NAD(+)-linkage to neuronal glyceraldehyde-3-phosphate dehydrogenase. Marin, P., Maus, M., Bockaert, J., Glowinski, J., Prémont, J. Biochem. J. (1995) [Pubmed]
  34. Bacillus subtilis paraquat resistance is directed by sigmaM, an extracytoplasmic function sigma factor, and is conferred by YqjL and BcrC. Cao, M., Moore, C.M., Helmann, J.D. J. Bacteriol. (2005) [Pubmed]
  35. Roles of reactive oxygen species and heme oxygenase-1 in modulation of alveolar macrophage-mediated pulmonary immune responses to Listeria monocytogenes by diesel exhaust particles. Yin, X.J., Ma, J.Y., Antonini, J.M., Castranova, V., Ma, J.K. Toxicol. Sci. (2004) [Pubmed]
  36. The effect of oxidative stress on endothelium-dependent and nitric oxide donor-induced relaxation: implications for nitrate tolerance. Hanspal, I.S., Magid, K.S., Webb, D.J., Megson, I.L. Nitric Oxide (2002) [Pubmed]
  37. Oxidative stress induces NF kappa B DNA binding and inducible NOS mRNA in human epithelial cells. Adcock, I.M., Brown, C.R., Kwon, O., Barnes, P.J. Biochem. Biophys. Res. Commun. (1994) [Pubmed]
  38. Effects of pro- and antioxidative compounds on renal production of erythropoietin. Neumcke, I., Schneider, B., Fandrey, J., Pagel, H. Endocrinology (1999) [Pubmed]
  39. Screening for microalbuminuria by use of a rapid, low-cost colorimetric assay. Phillipou, G., James, S.K., Seaborn, C.J., Phillips, P.J. Clin. Chem. (1989) [Pubmed]
  40. Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolyzable tannins. Nelson, K.E., Pell, A.N., Schofield, P., Zinder, S. Appl. Environ. Microbiol. (1995) [Pubmed]
  41. The influence of an extraneuronal compartment on the relaxation of the cat nictitating membrane in vivo. Eccles, R., Maclean, A.G. Br. J. Pharmacol. (1978) [Pubmed]
 
WikiGenes - Universities