The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

DNA-binding and dimerization preferences of Arabidopsis homeodomain-leucine zipper transcription factors in vitro.

Homeodomain-leucine zipper (HDZip) proteins constitute a large family of transcription factors apparently unique to plants. In this report we characterize the DNA-binding and dimerization preferences in vitro of class I HDZip proteins. Using gel-exclusion chromatography and in vitro protein binding assays we demonstrate that the HDZip class I protein ATHB5 forms a homodimeric complex in solution. Consistent with this finding we have demonstrated the sequence-specific interaction of ATHB5 with a 9 bp pseudopalindromic DNA sequence, CAATNATTG, composed of two half-sites overlapping at a central position, by use of a PCR-assisted binding-site selection assay and competitive EMSA experiments. A majority of other known members of HDZip class I interacted with similar DNA sequences, but differed in their preference for A/T versus G/C in the central position of the binding site. Selective heterodimerization in vitro was demonstrated between ATHB5 and different class I HDZip proteins. Heterodimer formation between class I HDZip proteins is of potential functional significance for the integration of information from different signalling pathways in the control of plant development.[1]

References

 
WikiGenes - Universities