The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions for transforming growth factor-beta and inhibin A.

Betaglycan, also known as the transforming growth factor-beta (TGF-beta) type III receptor, is a membrane-anchored proteoglycan that binds TGF-beta via its core protein. Deletion mutagenesis analysis has revealed two regions of betaglycan ectodomain capable of binding TGF-beta: one at the amino-terminal half, the endoglin-related region (López-Casillas, F., Payne, H., Andres, J. L., and Massagué, J. (1994) J. Cell Biol. 124, 557-568), and the other at the carboxyl-terminal half, the uromodulin-related region (Pepin, M.-C., Beauchemin, M., Plamondon, J., and O'Connor-McCourt, M. D. (1994) Proc. Natl. Acad. Sci. U. S. A 91, 6997-7001). In the present work we have functionally characterized these ligand binding regions. Similar to the wild type receptor, both regions bind TGF-beta2 with higher affinity than TGF-beta1. However, only the endoglin-related region increases the TGF-beta2 labeling of the TGF-beta type II receptor, the so-called "TGF-beta -presentation" function of the wild type receptor. Despite this preference, both regions as well as the wild type receptor mediate the TGF-beta2-dependent Smad2 phosphorylation, indicating that they can function indistinguishably as TGF-beta-enhancing co-receptors. On the other hand, we found that the recently described ability of the wild type betaglycan to bind inhibin A is a property of the core protein that resides in the uromodulin-related region. Binding competition experiments indicate that this region binds inhibin and TGF-beta with the following relative affinities: TGF-beta2 > inhibin A > TGF-beta1. All together, the present results suggest that betaglycan ectodomain is endowed with two bona fide independent ligand binding domains that can perform specialized functions as co-receptors of distinct members of the TGF-beta superfamily.[1]

References

 
WikiGenes - Universities