The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The recruitment of SOX/ OCT complexes and the differential activity of HOXA1 and HOXB1 modulate the Hoxb1 auto-regulatory enhancer function.

Regionally restricted expression patterns of Hox genes in developing embryos rely on auto-, cross-, and para-regulatory transcriptional elements. One example is the Hoxb1 auto-regulatory element (b1-ARE), which drives expression of Hoxb1 in the fourth rhombomere of the hindbrain. We previously showed that HOXB1 and PBX1 activate transcription from the b1-ARE by binding to sequences required for the expression of a reporter gene in rhombomere 4 in vivo. We now report that in embryonal carcinoma cells, which retain characteristics of primitive neuroectodermal cells, the b1-ARE displays higher basal and HOX/PBX-induced activities than in other cell backgrounds. We have identified a bipartite-binding site for SOX/ OCT heterodimers within the b1-ARE that accounts for its cell context-specific activity and is required for maximal transcriptional activity of HOX/PBX complexes in embryonal carcinoma cells. Furthermore, we found that in an embryonal carcinoma cell background, HOXB1 has a significantly higher transcriptional activity than its paralog HOXA1. We map the determinants for this differential activity within the HOXB1 N-terminal transcriptional activation domain. By using analysis in transgenic and HOXA1 mutant mice, we extended these findings on the differential activities of HOXA1 and HOXB1 in vivo, and we demonstrated that they are important for regulating aspects of HOXB1 expression in the hindbrain. We found that mutation of the SOX/ OCT site and targeted inactivation of Hoxa1 both impair the response of the b1-ARE to retinoic acid in transgenic mice. Our results show that Hoxa1 is the primary mediator of the response of b1-ARE to retinoic acid in vivo and that this function is dependent on the binding of SOX/ OCT heterodimers to the b1-ARE. These results uncover novel functional differences between Hox paralogs and their modulators.[1]

References

  1. The recruitment of SOX/OCT complexes and the differential activity of HOXA1 and HOXB1 modulate the Hoxb1 auto-regulatory enhancer function. Di Rocco, G., Gavalas, A., Popperl, H., Krumlauf, R., Mavilio, F., Zappavigna, V. J. Biol. Chem. (2001) [Pubmed]
 
WikiGenes - Universities