The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Two WD repeat-containing TATA- binding protein- associated factors in fission yeast that suppress defects in the anaphase-promoting complex.

The general transcription factor IID consists of the TATA-binding protein ( TBP) and multiple TBP-associated factors (TAFs). Here we report the isolation of two related TAF genes from the fission yeast Schizosaccharomyces pombe as multicopy suppressors of a temperature-sensitive mutation in the ubiquitin-conjugating enzyme gene ubcP4(+). The ubcP4(ts) mutation causes cell cycle arrest in mitosis, probably due to defects in ubiquitination mediated by the anaphase-promoting complex/cyclosome. One multicopy suppressor is the previously reported gene taf72(+), whereas the other is a previously unidentified gene named taf73(+). We show that the taf73(+) gene, like taf72(+), is essential for cell viability. The taf72(+) and taf73(+) genes encode proteins homologous to WD repeat-containing TAFs such as human TAF100, Drosophila TAF80/85, and Saccharomyces cerevisiae TAF90. We demonstrate that TAF72 and TAF73 proteins are present in the same complex with TBP and other TAFs and that TAF72, but not TAF73, is associated with the putative histone acetylase Gcn5. We also show that overexpression of TAF72 or TAF73 suppresses the cell cycle arrest in mitosis caused by a mutation in the anaphase-promoting complex/cyclosome subunit gene cut9(+). These results suggest that TAF72 and TAF73 may regulate the expression of genes involved in ubiquitin-dependent proteolysis during mitosis. Our study thus provides evidence for a possible role of WD repeat-containing TAFs in the expression of genes involved in progression through the M phase of the cell cycle.[1]


WikiGenes - Universities