The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Further insights into peroxisomal lipid breakdown via alpha- and beta-oxidation.

Mammalian peroxisomes degrade fatty carboxylates via two pathways, beta-oxidation and, as shown more recently, alpha-oxidation. The latter process consists of an activation step, followed by a hydroxylation at position 2 and cleavage of the 2-hydroxyacyl-CoA, generating formyl-CoA (precursor of formate/CO(2)) and, in case of phytanic acid as substrate, pristanal (precursor of pristanic acid). The stereochemistry of the overall pathway, cofactor requirements and substrate specificity of the hydroxylase and the cleavage enzyme, which is homologous with bacterial oxalyl-CoA decarboxylases, will be discussed. With regard to beta-oxidation, peroxisomes contain different acyl-CoA oxidases, multifunctional proteins and thiolases. Based on substrate spectra and stereospecificities of these enzymes, a model was proposed whereby straight chain and branched compounds are degraded by separate pathways. The biochemical findings in mice lacking the D-specific multifunctional protein, however, do not fully support this model. These animals, together with the Pex5(-/-) mice, might be useful to pinpoint the pathological factors contributing to the brain abnormalities in Zellweger patients. Apparently, the deficit in docosahexaenoic acid, presumably formed via peroxisomal beta-oxidation, is not the major cause.[1]

References

  1. Further insights into peroxisomal lipid breakdown via alpha- and beta-oxidation. Van Veldhoven, P.P., Casteels, M., Mannaerts, G.P., Baes, M. Biochem. Soc. Trans. (2001) [Pubmed]
 
WikiGenes - Universities