The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Statin- induced inhibition of the Rho-signaling pathway activates PPARalpha and induces HDL apoA-I.

Statins are inhibitors of the rate-limiting enzyme in cholesterol synthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. In addition to reducing LDL cholesterol, statin treatment increases the levels of the antiatherogenic HDL and its major apolipoprotein apoA-I. Here, we investigated the molecular mechanisms of apoA-I regulation by statins. Treatment with statins increased apoA-I mRNA levels in human HepG2 hepatoma cells, and this effect was reversed by the addition of mevalonate, implicating HMG-CoA reductase as the relevant target of these drugs. Pretreatment with Actinomycin D abolished the increase of apoA-I mRNA, indicating that statins act at the transcriptional level. Indeed, statins increased the human apoA-I promoter activity in transfected cells, and we have identified a statin response element that coincides with a PPARalpha response element known to confer fibrate responsiveness to this gene. The statin effect could be abolished not only by mevalonate, but also by geranylgeranyl pyrophosphate, whereas inhibition of geranylgeranyl transferase activity or treatment with an inhibitor of the Rho GTP-binding protein family increased PPARalpha activity. Using dominant negative forms of these proteins, we found that Rho A itself mediates this response. Because cotreatment with statins and fibrates activated PPARalpha in a synergistic manner, these observations provide a molecular basis for combination treatment with statins and fibrates in coronary heart disease.[1]


  1. Statin-induced inhibition of the Rho-signaling pathway activates PPARalpha and induces HDL apoA-I. Martin, G., Duez, H., Blanquart, C., Berezowski, V., Poulain, P., Fruchart, J.C., Najib-Fruchart, J., Glineur, C., Staels, B. J. Clin. Invest. (2001) [Pubmed]
WikiGenes - Universities