The amino acid transport system b(o,+) and cystinuria.
Amino acid transport in mammalian plasma membranes is mediated by a multiplicity of amino acid transport systems. Some of them (systems L, y+ L, x(c)- and b(o,+)) are the result of the activity of heteromeric amino acid transporters (HAT) (i.e. transport activity is elicited by the coexpression of a heavy and a light subunit). The two heavy subunits known today (HSHAT: rBAT and 4F2hc) were identified in 1992, and light subunits (LSHAT: LAT-1, LAT-2, asc-1, y+ LAT-1, y+ LAT-2, xCT and b(o,+)AT) have been cloned in the last 2 years. Defects in two genes of this family (SLC3A1, encoding rBAT and SLC7A9, encoding b(o,+)AT) are responsible for cystinuria, an inherited aminoaciduria of cystine and dibasic amino acids. This finding and functional studies of rBAT and b(o,+)AT suggested that these two proteins encompassed the high-affinity renal reabsorption system of cystine. In contrast to this view, immunofluorescence studies showed that rBAT is most abundant in the proximal straight tubule, and b(o,+)AT is most abundant in the proximal convoluted tubule of the nephron. The need for a new light subunit for rBAT and a heavy subunit for b(o,+)AT is discussed.[1]References
- The amino acid transport system b(o,+) and cystinuria. Palacin, M., Fernández, E., Chillarón, J., Zorzano, A. Mol. Membr. Biol. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg