The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The amino acid transport system b(o,+) and cystinuria.

Amino acid transport in mammalian plasma membranes is mediated by a multiplicity of amino acid transport systems. Some of them (systems L, y+ L, x(c)- and b(o,+)) are the result of the activity of heteromeric amino acid transporters (HAT) (i.e. transport activity is elicited by the coexpression of a heavy and a light subunit). The two heavy subunits known today (HSHAT: rBAT and 4F2hc) were identified in 1992, and light subunits (LSHAT: LAT-1, LAT-2, asc-1, y+ LAT-1, y+ LAT-2, xCT and b(o,+)AT) have been cloned in the last 2 years. Defects in two genes of this family (SLC3A1, encoding rBAT and SLC7A9, encoding b(o,+)AT) are responsible for cystinuria, an inherited aminoaciduria of cystine and dibasic amino acids. This finding and functional studies of rBAT and b(o,+)AT suggested that these two proteins encompassed the high-affinity renal reabsorption system of cystine. In contrast to this view, immunofluorescence studies showed that rBAT is most abundant in the proximal straight tubule, and b(o,+)AT is most abundant in the proximal convoluted tubule of the nephron. The need for a new light subunit for rBAT and a heavy subunit for b(o,+)AT is discussed.[1]

References

  1. The amino acid transport system b(o,+) and cystinuria. Palacin, M., Fernández, E., Chillarón, J., Zorzano, A. Mol. Membr. Biol. (2001) [Pubmed]
 
WikiGenes - Universities