The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SLC7A9  -  solute carrier family 7 (amino acid...

Homo sapiens

Synonyms: BAT1, CSNU3, Glycoprotein-associated amino acid transporter b0,+AT1, Solute carrier family 7 member 9, b(0,+)-type amino acid transporter 1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SLC7A9


High impact information on SLC7A9

  • Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT [3].
  • We have identified a new transcript, encoding a protein (bo, +AT, for bo,+ amino acid transporter) belonging to a family of light subunits of amino acid transporters, expressed in kidney, liver, small intestine and placenta, and localized its gene (SLC7A9) to the non-type I cystinuria 19q locus [3].
  • Recently, the role of b(o,+)AT (SLC7A9) in cystinuria (non Type I) and the role of y(+)LAT-1 (SLC7A7) in lysinuric protein intolerance have been demonstrated [4].
  • Mutations in SLC3A1, which encodes rBAT, cause Type I cystinuria, and mutations in SLC7A9, which encodes a putative subunit of rBAT (b(o,+)AT), cause non-Type I cystinuria [5].
  • Here we describe the genomic structure of SLC7A9 (13 exons) and 28 new mutations in this gene that, together with the seven previously reported, explain 79% of the alleles in 61 non-Type I cystinuria patients [5].

Chemical compound and disease context of SLC7A9

  • The finding of SLC7A9 mutations in all three subtypes underscores the complex interactions between specific cystinuria genes and other factors influencing cystine excretion [6].

Biological context of SLC7A9


Associations of SLC7A9 with chemical compounds

  • Mutations of SLC7A9, which encodes the luminal transport channel itself, tend to be dominant and mutations of SLC3A1 (rBAT), which encodes a transporter subunit, are always recessive [10].
  • The genetic basis of the disorder is best characterized in humans and is caused by mutations in one of the amino acid transporter genes SLC3A1 or SLC7A9, which results in hyperexcretion of cystine and the dibasic amino acids in the urine and subsequent precipitation of cystine due to its low solubility in urine [11].

Other interactions of SLC7A9


Analytical, diagnostic and therapeutic context of SLC7A9

  • METHODS: We screened a cohort of 49 cystinurics for copy number deviations in the genes SLC3A1 and SLC7A9 by quantitative real-time PCR assays using fluorogenic 5' nuclease chemistry [13].
  • No differences were detected between the patients with mutations in SLC3A1 and those with mutations in SLC7A9 in relation to the age of disease onset, the estimated number of stones, the number of invasive procedures, the number of patients receiving drug therapy, or the patients' urinary pH [14].
  • We introduce a method of examining the implications of LD data for disease association studies based on sample size considerations: this shows that certain TNF polymorphisms would be likely to yield positive associations if the true disease allele resided in LTA or BAT1 [15].


  1. The molecular basis of kidney stones. Langman, C.B. Curr. Opin. Pediatr. (2004) [Pubmed]
  2. The molecular basis of cystinuria: an update. Goodyer, P., Boutros, M., Rozen, R. Exp. Nephrol. (2000) [Pubmed]
  3. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Feliubadaló, L., Font, M., Purroy, J., Rousaud, F., Estivill, X., Nunes, V., Golomb, E., Centola, M., Aksentijevich, I., Kreiss, Y., Goldman, B., Pras, M., Kastner, D.L., Pras, E., Gasparini, P., Bisceglia, L., Beccia, E., Gallucci, M., de Sanctis, L., Ponzone, A., Rizzoni, G.F., Zelante, L., Bassi, M.T., George, A.L., Manzoni, M., De Grandi, A., Riboni, M., Endsley, J.K., Ballabio, A., Borsani, G., Reig, N., Fernández, E., Estévez, R., Pineda, M., Torrents, D., Camps, M., Lloberas, J., Zorzano, A., Palacín, M. Nat. Genet. (1999) [Pubmed]
  4. The molecular bases of cystinuria and lysinuric protein intolerance. Palacín, M., Borsani, G., Sebastio, G. Curr. Opin. Genet. Dev. (2001) [Pubmed]
  5. Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-Type I cystinuria. Font, M.A., Feliubadaló, L., Estivill, X., Nunes, V., Golomb, E., Kreiss, Y., Pras, E., Bisceglia, L., d'Adamo, A.P., Zelante, L., Gasparini, P., Bassi, M.T., George , A.L., Manzoni, M., Riboni, M., Ballabio, A., Borsani, G., Reig, N., Fernández, E., Zorzano, A., Bertran, J., Palacín, M. Hum. Mol. Genet. (2001) [Pubmed]
  6. SLC7A9 mutations in all three cystinuria subtypes. Leclerc, D., Boutros, M., Suh, D., Wu, Q., Palacin, M., Ellis, J.R., Goodyer, P., Rozen, R. Kidney Int. (2002) [Pubmed]
  7. Advances in genetic aspects of cystinuria. Ito, H., Egoshi, K., Mizoguchi, K., Akakura, K. Molecular urology. (2000) [Pubmed]
  8. Cystinuria in children: distribution and frequencies of mutations in the SLC3A1 and SLC7A9 genes. Botzenhart, E., Vester, U., Schmidt, C., Hesse, A., Halber, M., Wagner, C., Lang, F., Hoyer, P., Zerres, K., Eggermann, T. Kidney Int. (2002) [Pubmed]
  9. Molecular genetic analysis of SLC3A1 and SLC7A9 genes in Czech and Slovak cystinuric patients. Skopková, Z., Hrabincová, E., Stástná, S., Kozák, L., Adam, T. Ann. Hum. Genet. (2005) [Pubmed]
  10. Transient neonatal cystinuria. Boutros, M., Vicanek, C., Rozen, R., Goodyer, P. Kidney Int. (2005) [Pubmed]
  11. SLC7A9 cDNA cloning and mutational analysis of SLC3A1 and SLC7A9 in canine cystinuria. Harnevik, L., Hoppe, A., Söderkvist, P. Mamm. Genome (2006) [Pubmed]
  12. Identification of novel cystinuria mutations and polymorphisms in SLC3A1 and SLC7A9 genes: absence of SLC7A10 gene mutations in cystinuric patients. Chatzikyriakidou, A., Sofikitis, N., Georgiou, I. Genet. Test. (2005) [Pubmed]
  13. Significant contribution of genomic rearrangements in SLC3A1 and SLC7A9 to the etiology of cystinuria. Schmidt, C., Vester, U., Wagner, C.A., Lahme, S., Hesse, A., Hoyer, P., Lang, F., Zerres, K., Eggermann, T. Kidney Int. (2003) [Pubmed]
  14. Clinical manifestations in Israeli cystinuria patients and molecular assessment of carrier rates in Libyan Jewish controls. Sidi, R., Levy-Nissenbaum, E., Kreiss, I., Pras, E. Isr. Med. Assoc. J. (2003) [Pubmed]
  15. Complex haplotypic structure of the central MHC region flanking TNF in a West African population. Ackerman, H.C., Ribas, G., Jallow, M., Mott, R., Neville, M., Sisay-Joof, F., Pinder, M., Campbell, R.D., Kwiatkowski, D.P. Genes Immun. (2003) [Pubmed]
WikiGenes - Universities