The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis.

Proximal renal tubular acidosis associated with ocular abnormalities such as band keratopathy, glaucoma, and cataracts is caused by mutations in the Na(+)-HCO(3)(-) cotransporter (NBC-1). However, the mechanism by which NBC-1 inactivation leads to such ocular abnormalities remains to be elucidated. By immunological analysis of human and rat eyes, we demonstrate that both kidney type (kNBC-1) and pancreatic type (pNBC-1) transporters are present in the corneal endothelium, trabecular meshwork, ciliary epithelium, and lens epithelium. In the human lens epithelial (HLE) cells, RT-PCR detected mRNAs of both kNBC-1 and pNBC-1. Although a Na(+)-HCO(3)-cotransport activity has not been detected in mammalian lens epithelia, cell pH (pH(i)) measurements revealed the presence of Cl(-)-independent, electrogenic Na(+)-HCO(3)-cotransport activity in HLE cells. In addition, up to 80% of amiloride-insensitive pH(i) recovery from acid load in the presence of HCO(3)(-)/CO(2) was inhibited by adenovirus-mediated transfer of a specific hammerhead ribozyme against NBC-1, consistent with a major role of NBC-1 in overall HCO(3)-transport by the lens epithelium. These results indicate that the normal transport activity of NBC-1 is indispensable not only for the maintenance of corneal and lenticular transparency but also for the regulation of aqueous humor outflow.[1]

References

  1. Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis. Usui, T., Hara, M., Satoh, H., Moriyama, N., Kagaya, H., Amano, S., Oshika, T., Ishii, Y., Ibaraki, N., Hara, C., Kunimi, M., Noiri, E., Tsukamoto, K., Inatomi, J., Kawakami, H., Endou, H., Igarashi, T., Goto, A., Fujita, T., Araie, M., Seki, G. J. Clin. Invest. (2001) [Pubmed]
 
WikiGenes - Universities