Kinetics of chemical degradation of isoxaflutole: influence of the nature of aqueous buffers (alkanoic acid/sodium salt vs phosphate).
A kinetic study of the chemical degradation of isoxaflutole (5-cyclopropyl-1,2-oxazol-4-yl alpha alpha alpha-trifluoro-2-mesyl-p-tolyl ketone) into its diketonitrile derivative (DKN), which is its active herbicide principle, in organic buffers at different pH values was carried out using a HPLC/UV detection method. The values of the pseudo-first-order rate constants Kobs for the reaction were calculated and compared with those previously obtained in inorganic buffers. In both cases, Kobs was found to be dependent on pH and temperature, but at pH 5.2 the degradation of isoxaflutole in CH3COOH/CH3COONa buffers was considerably faster than in KH2PO4/Na2HPO4 buffers, indicating that the compound was sensitive to the nature of the reagents used to prepare buffered solutions. The influence of phosphate and acetate concentrations and the influence of the R-substituent in RCOOH/RCOONa buffers were investigated. For the HA/A- buffers studied, the values of Kobs were linearly dependent on HA and A- concentrations, which meant that the degradation of isoxaflutole was subject to general catalysis. The values of Kobs were also found to be dependent on the number and the position of the CH3 groups of the R-substituent. The known degradation product of DKN (a benzoic acid derivative) was not detected throughout this study.[1]References
- Kinetics of chemical degradation of isoxaflutole: influence of the nature of aqueous buffers (alkanoic acid/sodium salt vs phosphate). Beltran, E., Fenet, H., Cooper, J.F., Coste, C.M. Pest Manag. Sci. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg