The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Class II histone deacetylases: structure, function, and regulation.

Acetylation of histones, as well as non-histone proteins, plays important roles in regulating various cellular processes. Dynamic control of protein acetylation levels in vivo occurs through the opposing actions of histone acetyltransferases and histone deacetylases (HDACs). In the past few years, distinct classes of HDACs have been identified in mammalian cells. Class I members, such as HDAC1, HDAC2, HDAC3, and HDAC8, are well-known enzymatic transcriptional corepressors homologous to yeast Rpd3. Class II members, including HDAC4, HDAC5, HDAC6, HDAC7, and HDAC9, possess domains similar to the deacetylase domain of yeast Hdal. HDAC4, HDAC5, and HDAC7 function as transcriptional corepressors that interact with the MEF2 transcription factors and the N-CoR, BCoR, and CtBP corepressors. Intriguingly, HDAC4, HDAC5, and probably HDAC7 are regulated through subcellular compartmentalization controlled by site-specific phosphorylation and binding of 14-3-3 proteins; the regulation of these HDACs is thus directly linked to cellular signaling networks. Both HDAC6 and HDAC9 possess unique structural modules, so they may have special biological functions. Comprehension of the structure, function, and regulation of class II deacetylases is important for elucidating how acetylation regulates functions of histones and other proteins in vivo.[1]

References

  1. Class II histone deacetylases: structure, function, and regulation. Bertos, N.R., Wang, A.H., Yang, X.J. Biochem. Cell Biol. (2001) [Pubmed]
 
WikiGenes - Universities