The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

HDAC2  -  histone deacetylase 2

Homo sapiens

Synonyms: HD2, Histone deacetylase 2, RPD3, YAF1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of HDAC2

  • We show that the upregulation of HDAC2 in colorectal cancer occurred early at the polyp stage, was more robust and occurred more frequently than HDAC1 [1].
  • Although most HDAC2 is not phosphorylated in the breast cancer cells, HDAC2 bound to Sp1 and Sp3 and cross-linked to chromatin in situ is highly enriched in a phosphorylated form that has a reduced mobility in SDS-polyacrylamide gels [2].
  • Closely related HDAC1 and HDAC2 do not elicit humoral response in colon cancer patients [3].
  • In chronic obstructive pulmonary disease, there is a reduction in HDAC2 activity and expression, which may account for the amplified inflammation and resistance to the actions of corticosteroids [4].
  • The reduction in HDAC2 may be secondary to oxidative and nitrative stress as a result of cigarette smoking and severe inflammation, and may also occur in severe asthma, smoking asthmatic patients and cystic fibrosis [4].

High impact information on HDAC2


Chemical compound and disease context of HDAC2


Biological context of HDAC2


Anatomical context of HDAC2


Associations of HDAC2 with chemical compounds

  • Significantly, upon addition of T3, the NRE further recruited the thyroid hormone receptor (TRbeta) and another deacetylase, HDAC2 [15].
  • TSA treatment increased the acetylation of the transcription factors Sp1 and C/EBPalpha and decreased their binding as well as the binding of CBP and HDAC2 to the bcl-2 promoters [16].
  • The N-terminal leucine-abundant region of PELP1 was observed to interact with HDAC2 and exhibited repressive activity when tethered to the chromatin [17].
  • Furthermore, coimmunoprecipitation experiments indicated that HDAC10v1 associated with HDAC2 and SMRT (silencing mediator for retinoid and thyroid hormone receptors) [18].
  • Hyperphosphorylated HDAC2 was also observed in cells synchronized with nocodazole or taxol, demonstrating regulation of HDAC phosphorylation during mitosis [19].

Regulatory relationships of HDAC2


Other interactions of HDAC2

  • The class I deacetylases HDAC1 and HDAC2 are components of multisubunit complexes, one of which could associate with the nuclear hormone receptor corepressor, N-CoR [25].
  • CHD4 (also called Mi-2beta) is a component of a histone-deacetylase-2 (HDAC2)-containing complex, the nucleosome remodeling and deacetylating (NRD) complex [26].
  • Molecular association between ATR and two components of the nucleosome remodeling and deacetylating complex, HDAC2 and CHD4 [26].
  • Sequence comparison suggested that the HD2-type histone deacetylases and the FKBP-type PPIases may have evolved from a common ancestor enzyme [27].
  • In addition, like HDAC1, the phospho-acceptor sites in HDAC2 are located in the C-terminal portion of the protein [11].

Analytical, diagnostic and therapeutic context of HDAC2


  1. Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Huang, B.H., Laban, M., Leung, C.H., Lee, L., Lee, C.K., Salto-Tellez, M., Raju, G.C., Hooi, S.C. Cell Death Differ. (2005) [Pubmed]
  2. The transcriptional repressor Sp3 is associated with CK2-phosphorylated histone deacetylase 2. Sun, J.M., Chen, H.Y., Moniwa, M., Litchfield, D.W., Seto, E., Davie, J.R. J. Biol. Chem. (2002) [Pubmed]
  3. Antibody response to a non-conserved C-terminal part of human histone deacetylase 3 in colon cancer patients. Shebzukhov, Y.V., Koroleva, E.P., Khlgatian, S.V., Belousov, P.V., Kuz'mina, K.E., Radko, B.V., Longpre, F., Lagarkova, M.A., Kadachigova, T.S., Gurova, O.V., Meshcheryakov, A.A., Lichinitser, M.R., Knuth, A., Jager, E., Kuprash, D.V., Nedospasov, S.A. Int. J. Cancer (2005) [Pubmed]
  4. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Barnes, P.J., Adcock, I.M., Ito, K. Eur. Respir. J. (2005) [Pubmed]
  5. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Ropero, S., Fraga, M.F., Ballestar, E., Hamelin, R., Yamamoto, H., Boix-Chornet, M., Caballero, R., Alaminos, M., Setien, F., Paz, M.F., Herranz, M., Palacios, J., Arango, D., Orntoft, T.F., Aaltonen, L.A., Schwartz, S., Esteller, M. Nat. Genet. (2006) [Pubmed]
  6. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Rountree, M.R., Bachman, K.E., Baylin, S.B. Nat. Genet. (2000) [Pubmed]
  7. Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease. Bilodeau, S., Vallette-Kasic, S., Gauthier, Y., Figarella-Branger, D., Brue, T., Berthelet, F., Lacroix, A., Batista, D., Stratakis, C., Hanson, J., Meij, B., Drouin, J. Genes Dev. (2006) [Pubmed]
  8. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. Ito, K., Yamamura, S., Essilfie-Quaye, S., Cosio, B., Ito, M., Barnes, P.J., Adcock, I.M. J. Exp. Med. (2006) [Pubmed]
  9. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Zhu, P., Martin, E., Mengwasser, J., Schlag, P., Janssen, K.P., Göttlicher, M. Cancer Cell (2004) [Pubmed]
  10. Theophylline in chronic obstructive pulmonary disease: new horizons. Barnes, P.J. Proceedings of the American Thoracic Society. (2005) [Pubmed]
  11. Regulation of histone deacetylase 2 by protein kinase CK2. Tsai, S.C., Seto, E. J. Biol. Chem. (2002) [Pubmed]
  12. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Hassig, C.A., Tong, J.K., Fleischer, T.C., Owa, T., Grable, P.G., Ayer, D.E., Schreiber, S.L. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  13. Epstein-Barr virus nuclear antigen 3C recruits histone deacetylase activity and associates with the corepressors mSin3A and NCoR in human B-cell lines. Knight, J.S., Lan, K., Subramanian, C., Robertson, E.S. J. Virol. (2003) [Pubmed]
  14. Specific and redundant functions of histone deacetylases in regulation of cell cycle and apoptosis. Zhu, P., Huber, E., Kiefer, F., Göttlicher, M. Cell Cycle (2004) [Pubmed]
  15. Ligand-induced recruitment of a histone deacetylase in the negative-feedback regulation of the thyrotropin beta gene. Sasaki, S., Lesoon-Wood, L.A., Dey, A., Kuwata, T., Weintraub, B.D., Humphrey, G., Yang, W.M., Seto, E., Yen, P.M., Howard, B.H., Ozato, K. EMBO J. (1999) [Pubmed]
  16. Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Duan, H., Heckman, C.A., Boxer, L.M. Mol. Cell. Biol. (2005) [Pubmed]
  17. The transcriptional corepressor, PELP1, recruits HDAC2 and masks histones using two separate domains. Choi, Y.B., Ko, J.K., Shin, J. J. Biol. Chem. (2004) [Pubmed]
  18. Isolation and characterization of a novel class II histone deacetylase, HDAC10. Fischer, D.D., Cai, R., Bhatia, U., Asselbergs, F.A., Song, C., Terry, R., Trogani, N., Widmer, R., Atadja, P., Cohen, D. J. Biol. Chem. (2002) [Pubmed]
  19. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. Galasinski, S.C., Resing, K.A., Goodrich, J.A., Ahn, N.G. J. Biol. Chem. (2002) [Pubmed]
  20. Testicular zinc finger protein recruits histone deacetylase 2 and suppresses the transactivation function and intranuclear foci formation of agonist-bound androgen receptor competitively with TIF2. Tao, R.H., Kawate, H., Wu, Y., Ohnaka, K., Ishizuka, M., Inoue, A., Hagiwara, H., Takayanagi, R. Mol. Cell. Endocrinol. (2006) [Pubmed]
  21. Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Göttlicher, M. Ann. Hematol. (2004) [Pubmed]
  22. Targeting histone deacetylase 2 in chronic obstructive pulmonary disease treatment. Barnes, P.J. Expert Opin. Ther. Targets (2005) [Pubmed]
  23. Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Hrzenjak, A., Moinfar, F., Kremser, M.L., Strohmeier, B., Staber, P.B., Zatloukal, K., Denk, H. Mol. Cancer Ther. (2006) [Pubmed]
  24. Autoregulation of the N-myc gene is operative in neuroblastoma and involves histone deacetylase 2. Kim, M.K., Carroll, W.L. Cancer (2004) [Pubmed]
  25. The histone deacetylase-3 complex contains nuclear receptor corepressors. Wen, Y.D., Perissi, V., Staszewski, L.M., Yang, W.M., Krones, A., Glass, C.K., Rosenfeld, M.G., Seto, E. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  26. Molecular association between ATR and two components of the nucleosome remodeling and deacetylating complex, HDAC2 and CHD4. Schmidt, D.R., Schreiber, S.L. Biochemistry (1999) [Pubmed]
  27. The FK506-binding protein 25 functionally associates with histone deacetylases and with transcription factor YY1. Yang, W.M., Yao, Y.L., Seto, E. EMBO J. (2001) [Pubmed]
  28. Histone deacetylase inhibitors activate INK4d gene through Sp1 site in its promoter. Yokota, T., Matsuzaki, Y., Miyazawa, K., Zindy, F., Roussel, M.F., Sakai, T. Oncogene (2004) [Pubmed]
  29. Expression and activity of histone deacetylases in human asthmatic airways. Ito, K., Caramori, G., Lim, S., Oates, T., Chung, K.F., Barnes, P.J., Adcock, I.M. Am. J. Respir. Crit. Care Med. (2002) [Pubmed]
  30. Increased expression of histone deacetylase 2 is found in human gastric cancer. Song, J., Noh, J.H., Lee, J.H., Eun, J.W., Ahn, Y.M., Kim, S.Y., Lee, S.H., Park, W.S., Yoo, N.J., Lee, J.Y., Nam, S.W. APMIS (2005) [Pubmed]
  31. Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. Kaiser, C., James, S.R. BMC Biol. (2004) [Pubmed]
WikiGenes - Universities