The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Relevant cAMP-specific phosphodiesterase isoforms in human pituitary: effect of Gs(alpha) mutations.

Both cAMP production by adenylyl cyclase and cAMP degradation by phosphodiesterases account for intracellular cAMP levels. We previously demonstrated an increased phosphodiesterase activity in GH-secreting adenomas bearing the gsp oncogene. Here we characterize both the activity and the expression of cAMP-specific phosphodiesterase genes in the human pituitary and in gsp+ and gsp- GH-secreting adenomas and analyze the impact of this intracellular feedback mechanism on the levels of cAMP-responsive element-binding protein phosphorylation. Normal pituitary and gsp- GH-secreting adenomas showed similar phosphodiesterase activities, and 7-fold higher levels were observed in gsp+ tumors. In these tumors the increased activity was mainly owing to isobutyl-methyl-xanthine-sensitive phosphodiesterase 4 and to isobutyl-methyl-xanthine-insensitive isoforms. By semiquantitative RT-PCR, all phosphodiesterase 4 transcripts were expressed in the normal and tumoral pituitary. However, the levels of phosphodiesterase 4C and 4D messenger RNAs were significantly higher in gsp+ than in gsp- GH-secreting adenomas and normal pituitary. Expression of the thyroid-specific isobutyl-methyl-xanthine-insensitive phosphodiesterase 8B was absent in the normal pituitary but detectable in almost all GH-secreting adenomas and higher in gsp+ (P < 0.02). Therefore, this study provides a characterization of phosphodiesterase expression in human pituitary and demonstrates a dramatic induction of the cAMP-specific phosphodiesterases 4C and phosphodiesterases 4D and phosphodiesterases 8B in gsp+ GH-secreting adenomas. Similar levels of cAMP-responsive element-binding protein phosphorylation were observed in gsp- and gsp+ GH-secreting adenomas; however, phosphodiesterase blockade caused an increase in cAMP-responsive element-binding protein phosphorylation that was significantly higher in gsp+ than in gsp- adenomas. Because cAMP-responsive element-binding protein represents the principal end point of the cAMP pathway, these results suggest that the enhanced phosphodiesterase activity may have a significant impact on the phenotypic expression of gsp mutations.[1]


  1. Relevant cAMP-specific phosphodiesterase isoforms in human pituitary: effect of Gs(alpha) mutations. Persani, L., Borgato, S., Lania, A., Filopanti, M., Mantovani, G., Conti, M., Spada, A. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
WikiGenes - Universities