The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Coexpression of endothelin-converting enzyme-1 and endothelin-1 in different stages of human atherosclerosis.

BACKGROUND: Endothelin-converting enzyme (ECE)-1 activates endothelin-1 (ET-1) and may thus contribute to the regulation of vascular tone and cell growth during atherosclerosis. METHODS AND RESULTS: To evaluate ECE-1 immunoreactivity concerning big ET-1/ET-1, we performed qualitative and quantitative immunohistochemistry in normal internal mammary arteries (n=10), in coronary arteries with adaptive intimal fibrosis (n=10), in aortic fatty streaks (n=10), and in distinct regions of advanced carotid plaques (n=15). Furthermore, we determined ECE-1 activity in the control specimens and in the inflammatory intimal regions of carotid plaques. Double immunolabeling showed that ECE-1 was present in endothelial cells, vascular smooth muscle cells, and macrophages. All ET-1(+) cells were simultaneously ECE-1(+). Most importantly, there were significantly more ET-1(+) cells in the intima and media when atherosclerosis was in an inflammatory stage than when it was in a noninflammatory stage. Moreover, ECE-1 activity was upregulated in the intima of carotid plaques, although immunohistochemically, there were no significant differences between the number of ECE(+) cells in the different compartments of the arterial wall. CONCLUSION: Together with ET-1, ECE-1 is abundantly present in human arteries and at different stages of atherosclerotic plaque evolution. The upregulation of the ECE-1/ET-1 system is closely linked to the presence of chronic inflammation and is present in very early stages of plaque evolution. Therefore, enhanced production of active ET-1 may substantially contribute to cell growth and the regulation of vascular tone in advanced atherosclerotic lesions and in the very early stages of plaque evolution, when a plaque is still imperceptible clinically.[1]

References

  1. Coexpression of endothelin-converting enzyme-1 and endothelin-1 in different stages of human atherosclerosis. Ihling, C., Szombathy, T., Bohrmann, B., Brockhaus, M., Schaefer, H.E., Loeffler, B.M. Circulation (2001) [Pubmed]
 
WikiGenes - Universities