The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

The N-terminal region of Sgs1, which interacts with Top3, is required for complementation of MMS sensitivity and suppression of hyper-recombination in sgs1 disruptants.

The SGS1 gene of Saccharomyces (cerevisiae is a homologue of the genes affected in Bloom's syndrome, Werner's syndrome, and Rothmund-Thomson's syndrome. Disruption of the SGS1 gene is associated with high sensitivity to methyl methanesulfonate (MMS) and hydroxyurea (HU), and with hyper-recombination phenotypes, including interchromosomal recombination between heteroalleles. SGS1 encodes a protein which has a helicase domain similar to that of Escherichia coli RecQ. A comparison of amino acid sequences among helicases of the RecQ family reveals that Sgs1,WRN, and BLM share a conserved region adjacent to the C-terminal part of the helicase domain (C-terminal conserved region). In addition, Sgs1 contains two highly charged acidic regions in its N-terminal region and the HRDC (helicase and RNaseD C-terminal) domain at its C-terminal end. These regions were also found in BLM and WRN, and in Rqh1 from Schizosaccharomyces pombe. In this study, we demonstrate that the C-terminal conserved region, as well as the helicase motifs, of Sgs1 are essential for complementation of MMS sensitivity and suppression of hyper-recombination in sgs1 mutants. In contrast, the highly charged acidic regions, the HRDC domain, and the C-terminal 252 amino acids were dispensable for the complementation of these phenotypes. Surprisingly, the N-terminal 45 amino acids of Sgs1 were absolutely required for the suppression of the above phenotypes. Introduction of missense mutations into the region encoding amino acids 4-13 abolished the ability of Sgsl to complement MMS sensitivity and suppress hyper-recombination in sgs1 mutants, and also prevented its interaction with Top3, indicating that interaction with Top3 via the N-terminal region of Sgs1 is involved in the complementation of MMS sensitivity and the suppression of hyper-recombination.[1]

References

 
WikiGenes - Universities