The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53.

The p53 protein can inhibit cell cycling or induce apoptosis, and is thus a critical regulator of tumorigenesis. This protein is negatively regulated by a physical interaction with MDM2, an E3 ubiquitin ligase. This interaction is critical for cell viability; loss of Mdm2 causes cell death in vitro and in vivo in a p53-dependent manner. The recently discovered MDM2-related protein MDM4 (also known as MDMX) has some of the same properties as MDM2. MDM4 binds and inhibits p53 transcriptional activity in vitro. Unlike MDM2, however, MDM4 does not cause nuclear export or degradation of p53 (refs. 9,10). To study MDM4 function in vivo, we deleted Mdm4 in mice. Mdm4-null mice died at 7.5-8.5 dpc, owing to loss of cell proliferation and not induction of apoptosis. To assess the importance of p53 in the death of Mdm4-/- embryos, we crossed in the Trp53-null allele. The loss of Trp53 completely rescued the Mdm4-/- embryonic lethality. Thus, MDM2 and MDM4 are nonoverlapping critical regulators of p53 in vivo. These data define a new pathway of p53 regulation and raise the possibility that increased MDM4 levels and the resulting inactivation of p53 contribute to the development of human tumors.[1]

References

  1. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Parant, J., Chavez-Reyes, A., Little, N.A., Yan, W., Reinke, V., Jochemsen, A.G., Lozano, G. Nat. Genet. (2001) [Pubmed]
 
WikiGenes - Universities