The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

Ubb1  -  ubiquitin 1

Mus musculus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ubb1

 

Psychiatry related information on Ubb1

  • The neuronal ubiquitin/proteasomal pathway has been implicated in the pathogenesis of Alzheimer's disease (AD) [6].
  • (2006) now indicate that enhancing the activity of UCH-L1, a ubiquitin hydrolase, alleviates the synaptic dysfunction and memory loss associated with a mouse model of AD [7].
  • Although this subtype of frontotemporal dementia is defined by the presence of ubiquitin-positive but tau- and alpha-synuclein-negative inclusions, it is unclear whether all cases of FTLD-U have the same underlying pathogenesis [8].
 

High impact information on Ubb1

 

Chemical compound and disease context of Ubb1

  • CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity [14].
  • Seven in absentia homolog 1A (Siah1A) is a member of the RING-finger-containing E3 ubiquitin ligases and has been shown to bind to the Siah-interacting domain (SID) at the carboxyl-terminal tails of the long splice forms of group 1 metabotropic glutamate receptors (mGluR1a and mGluR5) [15].
  • Pituitary hyperplasia in glycoprotein hormone alpha subunit-, p18(INK4C)-, and p27(kip-1)-null mice: analysis of proteins influencing p27(kip-1) ubiquitin degradation [16].
  • Increased expression of ubiquitin during adenosine 3',5'-cyclic monophosphate-induced differentiation of neuroblastoma cells in culture [17].
  • In fact, occurrence of ubiquitin-positive neuronal inclusions and DNA damage both in nigral and striatal cells sheds new light into the fine alterations induced by MDMA, also suggesting the involvement of nuclear and cytoplasmic components of the ubiquitin-proteasome pathway in MDMA toxicity [18].
 

Biological context of Ubb1

 

Anatomical context of Ubb1

  • When HeLa cells are starved or treated with a proteasome inhibitor, Alfy relocalizes to characteristic filamentous cytoplasmic structures located close to autophagic membranes and ubiquitin-containing protein aggregates [24].
  • Spatially and temporally specific expression in mouse hippocampus of Usp9x, a ubiquitin-specific protease involved in synaptic development [25].
  • Ube1x, the enzyme responsible for the initial step in ubiquitin conjugation, was preferentially concentrated in the dendrites of the CA1 neurons instead of the CA3 neurons, suggesting a reciprocal relationship between ubiquitin conjugation and deubiquitination in CA3 and CA1 [25].
  • We show that the mouse cell line ts85 , a previously isolated cell cycle mutant, is temperature-sensitive in ubiquitin-protein conjugation, and that this effect is due to the specific thermolability of the ts85 ubiquitin-activating enzyme (E1) [21].
  • Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy [26].
 

Associations of Ubb1 with chemical compounds

  • Ubiquitin proteases are a large family of cysteine proteases that specifically cleave ubiquitin conjugates [27].
  • These data suggest that protein misfolding is responsible for the nuclear aggregates seen in SCA1, and that overexpression of a DnaJ chaperone promotes the recognition of a misfolded polyglutamine repeat protein, allowing its refolding and/or ubiquitin-dependent degradation [28].
  • Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway [29].
  • Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity [30].
  • Here we show that WSB-1 is part of an E3 ubiquitin ligase for the thyroid-hormone-activating type 2 iodothyronine deiodinase (D2) [31].
 

Physical interactions of Ubb1

  • We conclude that N-terminal sequences of Wld(S) protein influence the intranuclear location of both ubiquitin proteasome and NAD(+) synthesis machinery and that an evolutionary recent sequence mediates binding of mammalian Ube4b to VCP [32].
  • c-Cbl directs EGF receptors into an endocytic pathway that involves the ubiquitin-interacting motif of Eps15 [33].
  • Here we report that CHIP, an ubiquitin ligase that interacts directly with Hsp70/90, induces ubiquitination of the microtubule associated protein, tau [34].
  • In addition, due to the presence of a C-terminal ubiquitin-conjugating domain, BRUCE can covalently attach ubiquitin to substrates [35].
  • Upon over-expression, the ubiquitin-interacting motif abrogated the capacity of c-Cbl to promote EGF receptor endocytosis and only allowed receptor internalization via a route that lacked Eps15 [33].
 

Enzymatic interactions of Ubb1

 

Regulatory relationships of Ubb1

  • Our results suggest that the reduction of Smad7 protein resulting from enhanced ubiquitin-dependent degradation plays a pathogenic role in progression of tubulointerstitial fibrosis [38].
  • Siah1a has been implicated in numerous signaling pathways because of its ability to induce ubiquitin-mediated degradation of many protein substrates [39].
  • The degradation of both antizyme proteins is inhibited in ts20 cells containing a thermosensitive ubiquitin-activating enzyme, E1 [40].
  • Studies involving proteasome inhibitors and Western blot analysis for ubiquitination of p21 demonstrated that the stabilization of p21 is regulated through a ubiquitin-independent pathway [41].
  • The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation [11].
 

Other interactions of Ubb1

 

Analytical, diagnostic and therapeutic context of Ubb1

References

  1. The ubiquitin pathway in Parkinson's disease. Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., Mezey, E., Harta, G., Brownstein, M.J., Jonnalagada, S., Chernova, T., Dehejia, A., Lavedan, C., Gasser, T., Steinbach, P.J., Wilkinson, K.D., Polymeropoulos, M.H. Nature (1998) [Pubmed]
  2. Ubiquitin-mediated proteolysis and male sterility. Ciechanover, A. Nat. Med. (1996) [Pubmed]
  3. Essential role of E2-25K/Hip-2 in mediating amyloid-beta neurotoxicity. Song, S., Kim, S.Y., Hong, Y.M., Jo, D.G., Lee, J.Y., Shim, S.M., Chung, C.W., Seo, S.J., Yoo, Y.J., Koh, J.Y., Lee, M.C., Yates, A.J., Ichijo, H., Jung, Y.K. Mol. Cell (2003) [Pubmed]
  4. Parkin and the molecular pathways of Parkinson's disease. Giasson, B.I., Lee, V.M. Neuron (2001) [Pubmed]
  5. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. Li, H.H., Kedar, V., Zhang, C., McDonough, H., Arya, R., Wang, D.Z., Patterson, C. J. Clin. Invest. (2004) [Pubmed]
  6. Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Gong, B., Cao, Z., Zheng, P., Vitolo, O.V., Liu, S., Staniszewski, A., Moolman, D., Zhang, H., Shelanski, M., Arancio, O. Cell (2006) [Pubmed]
  7. Improving synaptic function in a mouse model of AD. Lansbury, P.T. Cell (2006) [Pubmed]
  8. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Sampathu, D.M., Neumann, M., Kwong, L.K., Chou, T.T., Micsenyi, M., Truax, A., Bruce, J., Grossman, M., Trojanowski, J.Q., Lee, V.M. Am. J. Pathol. (2006) [Pubmed]
  9. A CK2-dependent mechanism for degradation of the PML tumor suppressor. Scaglioni, P.P., Yung, T.M., Cai, L.F., Erdjument-Bromage, H., Kaufman, A.J., Singh, B., Teruya-Feldstein, J., Tempst, P., Pandolfi, P.P. Cell (2006) [Pubmed]
  10. Deletion of DDB1 in Mouse Brain and Lens Leads to p53-Dependent Elimination of Proliferating Cells. Cang, Y., Zhang, J., Nicholas, S.A., Bastien, J., Li, B., Zhou, P., Goff, S.P. Cell (2006) [Pubmed]
  11. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Adhikary, S., Marinoni, F., Hock, A., Hulleman, E., Popov, N., Beier, R., Bernard, S., Quarto, M., Capra, M., Goettig, S., Kogel, U., Scheffner, M., Helin, K., Eilers, M. Cell (2005) [Pubmed]
  12. Ubiquitin-mediated degradation a mechanism for fine-tuning TGF-beta signaling. Datto, M., Wang, X.F. Cell (2005) [Pubmed]
  13. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Yamashita, M., Ying, S.X., Zhang, G.M., Li, C., Cheng, S.Y., Deng, C.X., Zhang, Y.E. Cell (2005) [Pubmed]
  14. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Imai, Y., Soda, M., Hatakeyama, S., Akagi, T., Hashikawa, T., Nakayama, K.I., Takahashi, R. Mol. Cell (2002) [Pubmed]
  15. Seven in absentia homolog 1A mediates ubiquitination and degradation of group 1 metabotropic glutamate receptors. Moriyoshi, K., Iijima, K., Fujii, H., Ito, H., Cho, Y., Nakanishi, S. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  16. Pituitary hyperplasia in glycoprotein hormone alpha subunit-, p18(INK4C)-, and p27(kip-1)-null mice: analysis of proteins influencing p27(kip-1) ubiquitin degradation. Lloyd, R.V., Ruebel, K.H., Zhang, S., Jin, L. Am. J. Pathol. (2002) [Pubmed]
  17. Increased expression of ubiquitin during adenosine 3',5'-cyclic monophosphate-induced differentiation of neuroblastoma cells in culture. La Rosa, F.G., Kumar, S., Prasad, K.N. J. Neurochem. (1996) [Pubmed]
  18. DNA damage and ubiquitinated neuronal inclusions in the substantia nigra and striatum of mice following MDMA (ecstasy). Fornai, F., Lenzi, P., Frenzilli, G., Gesi, M., Ferrucci, M., Lazzeri, G., Biagioni, F., Nigro, M., Falleni, A., Giusiani, M., Pellegrini, A., Blandini, F., Ruggieri, S., Paparelli, A. Psychopharmacology (Berl.) (2004) [Pubmed]
  19. Transcriptional analysis of the candidate spermatogenesis gene Ube1y and of the closely related Ube1x shows that they are coexpressed in spermatogonia and spermatids but are repressed in pachytene spermatocytes. Odorisio, T., Mahadevaiah, S.K., McCarrey, J.R., Burgoyne, P.S. Dev. Biol. (1996) [Pubmed]
  20. Estimating the intensity of male-driven evolution in rodents by using X-linked and Y-linked Ube 1 genes and pseudogenes. Chang, B.H., Li, W.H. J. Mol. Evol. (1995) [Pubmed]
  21. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Finley, D., Ciechanover, A., Varshavsky, A. Cell (1984) [Pubmed]
  22. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Davies, S.W., Turmaine, M., Cozens, B.A., DiFiglia, M., Sharp, A.H., Ross, C.A., Scherzinger, E., Wanker, E.E., Mangiarini, L., Bates, G.P. Cell (1997) [Pubmed]
  23. UV irradiation triggers ubiquitin-dependent degradation of p21(WAF1) to promote DNA repair. Bendjennat, M., Boulaire, J., Jascur, T., Brickner, H., Barbier, V., Sarasin, A., Fotedar, A., Fotedar, R. Cell (2003) [Pubmed]
  24. Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. Simonsen, A., Birkeland, H.C., Gillooly, D.J., Mizushima, N., Kuma, A., Yoshimori, T., Slagsvold, T., Brech, A., Stenmark, H. J. Cell. Sci. (2004) [Pubmed]
  25. Spatially and temporally specific expression in mouse hippocampus of Usp9x, a ubiquitin-specific protease involved in synaptic development. Xu, J., Taya, S., Kaibuchi, K., Arnold, A.P. J. Neurosci. Res. (2005) [Pubmed]
  26. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., Walsh, K., Schiaffino, S., Lecker, S.H., Goldberg, A.L. Cell (2004) [Pubmed]
  27. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Wilson, S.M., Bhattacharyya, B., Rachel, R.A., Coppola, V., Tessarollo, L., Householder, D.B., Fletcher, C.F., Miller, R.J., Copeland, N.G., Jenkins, N.A. Nat. Genet. (2002) [Pubmed]
  28. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Cummings, C.J., Mancini, M.A., Antalffy, B., DeFranco, D.B., Orr, H.T., Zoghbi, H.Y. Nat. Genet. (1998) [Pubmed]
  29. Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway. Dai, Z., Quackenbush, R.C., Courtney, K.D., Grove, M., Cortez, D., Reuther, G.W., Pendergast, A.M. Genes Dev. (1998) [Pubmed]
  30. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Staropoli, J.F., McDermott, C., Martinat, C., Schulman, B., Demireva, E., Abeliovich, A. Neuron (2003) [Pubmed]
  31. The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Dentice, M., Bandyopadhyay, A., Gereben, B., Callebaut, I., Christoffolete, M.A., Kim, B.W., Nissim, S., Mornon, J.P., Zavacki, A.M., Zeöld, A., Capelo, L.P., Curcio-Morelli, C., Ribeiro, R., Harney, J.W., Tabin, C.J., Bianco, A.C. Nat. Cell Biol. (2005) [Pubmed]
  32. The slow Wallerian degeneration protein, WldS, binds directly to VCP/p97 and partially redistributes it within the nucleus. Laser, H., Conforti, L., Morreale, G., Mack, T.G., Heyer, M., Haley, J.E., Wishart, T.M., Beirowski, B., Walker, S.A., Haase, G., Celik, A., Adalbert, R., Wagner, D., Grumme, D., Ribchester, R.R., Plomann, M., Coleman, M.P. Mol. Biol. Cell (2006) [Pubmed]
  33. c-Cbl directs EGF receptors into an endocytic pathway that involves the ubiquitin-interacting motif of Eps15. de Melker, A.A., van der Horst, G., Borst, J. J. Cell. Sci. (2004) [Pubmed]
  34. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Petrucelli, L., Dickson, D., Kehoe, K., Taylor, J., Snyder, H., Grover, A., De Lucia, M., McGowan, E., Lewis, J., Prihar, G., Kim, J., Dillmann, W.H., Browne, S.E., Hall, A., Voellmy, R., Tsuboi, Y., Dawson, T.M., Wolozin, B., Hardy, J., Hutton, M. Hum. Mol. Genet. (2004) [Pubmed]
  35. BRUCE, a giant E2/E3 ubiquitin ligase and inhibitor of apoptosis protein of the trans-Golgi network, is required for normal placenta development and mouse survival. Lotz, K., Pyrowolakis, G., Jentsch, S. Mol. Cell. Biol. (2004) [Pubmed]
  36. The expression of Usp42 during embryogenesis and spermatogenesis in mouse. Kim, Y.K., Kim, Y.S., Yoo, K.J., Lee, H.J., Lee, D.R., Yeo, C.Y., Baek, K.H. Gene Expr. Patterns (2007) [Pubmed]
  37. Characterization of ubiquitin-like polypeptide acceptor protein, a novel pro-apoptotic member of the Bcl2 family. Nakamura, M., Tanigawa, Y. Eur. J. Biochem. (2003) [Pubmed]
  38. Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Fukasawa, H., Yamamoto, T., Togawa, A., Ohashi, N., Fujigaki, Y., Oda, T., Uchida, C., Kitagawa, K., Hattori, T., Suzuki, S., Kitagawa, M., Hishida, A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  39. Osteopenia in Siah1a mutant mice. Frew, I.J., Sims, N.A., Quinn, J.M., Walkley, C.R., Purton, L.E., Bowtell, D.D., Gillespie, M.T. J. Biol. Chem. (2004) [Pubmed]
  40. Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. Gandre, S., Bercovich, Z., Kahana, C. Eur. J. Biochem. (2002) [Pubmed]
  41. Hsp25 regulates the expression of p21(Waf1/Cip1/Sdi1) through multiple mechanisms. Park, S.H., Lee, Y.S., Osawa, Y., Hachiya, M., Akashi, M. J. Biochem. (2002) [Pubmed]
  42. 20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1. Asher, G., Bercovich, Z., Tsvetkov, P., Shaul, Y., Kahana, C. Mol. Cell (2005) [Pubmed]
  43. Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. Vlach, J., Hennecke, S., Alevizopoulos, K., Conti, D., Amati, B. EMBO J. (1996) [Pubmed]
  44. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. Kitagawa, M., Hatakeyama, S., Shirane, M., Matsumoto, M., Ishida, N., Hattori, K., Nakamichi, I., Kikuchi, A., Nakayama, K., Nakayama, K. EMBO J. (1999) [Pubmed]
  45. Ligand-dependent switching of ubiquitin-proteasome pathways for estrogen receptor. Tateishi, Y., Kawabe, Y., Chiba, T., Murata, S., Ichikawa, K., Murayama, A., Tanaka, K., Baba, T., Kato, S., Yanagisawa, J. EMBO J. (2004) [Pubmed]
  46. Altered ubiquitination and stability of aquaporin-1 in hypertonic stress. Leitch, V., Agre, P., King, L.S. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  47. Bioassay determinations of thymopoietin and thymic hormone levels in human plasma. Twomey, J.J., Goldstein, G., Lewis, V.M., Bealmear, P.M., Good, R.A. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  48. Transgenic mouse model of early-onset DYT1 dystonia. Shashidharan, P., Sandu, D., Potla, U., Armata, I.A., Walker, R.H., McNaught, K.S., Weisz, D., Sreenath, T., Brin, M.F., Olanow, C.W. Hum. Mol. Genet. (2005) [Pubmed]
 
WikiGenes - Universities