A non-hypoxic, ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1alpha.
A non-hypoxic, reactive oxygen species (ROS)-sensitive pathway mediating tumor necrosis factor-alpha (TNF-alpha)-dependent regulation of hypoxia-inducible factor-1alpha (HIF-alpha) was investigated in vitro. TNF-alpha mediated the translocation of HIF-1alpha, associated with up-regulating its activity under normoxia. Analysis of the mode of action of TNF-alpha revealed the accumulation of hydrogen peroxide (H2O2), superoxide anion (O(2-.)) and hydroxyl radical (.OH). Antioxidants purported as prototypical scavengers of H2O2 and .OH, attenuated TNF-alpha- induced HIF-1alpha activation, and blockading NADPH-oxidase by scavenging O(2-.) reduced the activity of HIF-1alpha. Inhibition of the mitochondrion complex I abrogated TNF-alpha-dependent activation of HIF-1alpha. Interrupting the respiratory chain reversed the excitatory effect of TNF-alpha on HIF-1alpha. These results indicate a non-hypoxic pathway mediating cytokine-dependent regulation of HIF-1alpha in a ROS-sensitive mechanism.[1]References
- A non-hypoxic, ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1alpha. Haddad, J.J., Land, S.C. FEBS Lett. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









