The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Disruption of replication protein A/single-stranded DNA complexes during apoptosis in HL-60 cells.

Replication protein A ( RPA) is a single-stranded DNA-binding protein which plays a role in DNA replication, repair, and recombination. We used gel mobility shift, super gel mobility shift, and Western blot to determine the fate of RPA during Hoechst 33342-induced apoptosis in HL-60 cells. Multiple bands were detected by gel mobility shift after the incubation of single-stranded gamma-(32)P-labeled oligo(dT)(30) with the nuclear extracts of HL-60 cells. Super gel mobility shift results indicated that only the highest molecular weight protein/oligo(dT)(30) complexes bound with anti-human RPA-32 and/or anti-human RPA-70 antibodies forming RPA/oligo(dT)(30) complexes. After the treatment of HL-60 cells with 15 microg/ml Hoechst 33342 for 3 h, the bands of RPA/oligo(dT)(30) complexes were decreased and bands of the lowest molecular weight protein/oligo(dT)(30) complexes were significantly increased when compared to the control group. These low-molecular-weight bands did not bind with RPA-32 or RPA-70 antibodies. Western blotting results showed that both RPA-32 and RPA-70 were decreased significantly in a time-dependent manner after 1 h of incubation with Hoechst 33342. These results demonstrate that in HL-60 cells, Hoechst 33342-induced apoptosis is associated with a rapid loss of the binding capacity of RPA to oligo(dT)(30) as well as immunoactive RPA-70 and RPA-32.[1]

References

 
WikiGenes - Universities