The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis.

A procedure was developed for the enrichment of auxotrophs in the antibiotic-insensitive archaebacterium Methanococcus. After mutagenesis with ethyl methanesulfonate, growing cells were selectively killed upon exposure to the base analogs 6-azauracil and 8-azahypoxanthine for 48 hr. Using this method, eight independent acetate autotrophs of Methanococcus maripaludis were isolated. Six of the auxotrophs had an absolute growth requirement for acetate and contained 1-16% of the wild-type levels of CO dehydrogenase. Three of these six also contained 14-29% of the wild-type levels of pyruvate oxidoreductase and 12-30% of the wild-type levels of pyruvate synthase. Two spontaneous revertants of these latter auxotrophs regained the ability to grow normally in the absence of acetate and wild-type levels of CO dehydrogenase, acetyl-CoA synthase, pyruvate oxidoreductase, and pyruvate synthase. Likewise, a spontaneous revertant of an auxotroph with reduced levels of CO dehydrogenase and wild-type levels of pyruvate oxidoreductase regained the ability to grow normally in the absence of acetate and wild-type levels of CO dehydrogenase and acetyl-CoA synthase. Two additional auxotrophs grew poorly in the absence of acetate but contained wild-type levels of CO dehydrogenase and pyruvate oxidoreductase. These results provide direct genetic evidence for the Ljungdahl-Wood pathway [Ljungdahl, L. G. (1986) Annu. Rev. Microbiol. 40, 415-450; Wood, H. G., Ragsdale, S. W. & Pezacka, E. (1986) Trends Biochem. Sci. 11, 14-18] of autotrophic acetyl-CoA biosynthesis in the methanogenic archaebacteria. Moreover, it suggests that the acetyl-CoA and pyruvate synthases may share a common protein or coenzyme component, be linked genetically, or be regulated by a common system.[1]

References

 
WikiGenes - Universities