The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Methanococcus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Methanococcus

  • Examination of the recognition of partially modified tRNA(Lys) anticodon variants by a bacterial (from Borrelia burgdorferi) and an archaeal (from Methanococcus maripaludis) class I lysyl-tRNA synthetase revealed differences in the pattern of anticodon recognition between the two enzymes [1].
  • Whereas ProRS from Methanococcus jannaschii is similar to E. coli in its ability to hydrolyze misactivated alanine via both pretransfer and post-transfer editing pathways, human ProRS lacks these activities [2].
  • Two USPA fold classes have been proposed: one based on Methanococcus jannaschii MJ0577 (1MJH) that binds ATP, and the other based on the Haemophilus influenzae universal stress protein (1JMV), highly similar to E. coli UspA, which does not bind ATP [3].
  • Cocultures of Desulfovibrio desulfuricans and Methanococcus maripaludis grew on sulfate-free lactate medium while vigorously methylating Hg2+ [4].
  • It encodes a 43,250-Da protein that showed higher similarity to argininosuccinate synthetases (ASS) from Methanococcus vannielii and Methanosarcina barkeri than to ASS deduced from other Streptomyces argG [5].
 

High impact information on Methanococcus

  • Here we report the crystal structure at 2.3 A resolution of the complex formed between 7S.S RNA and SRP19 in the archaeon Methanococcus jannaschii [6].
  • However, a single cysteinyl-tRNA synthetase activity was detected and purified from one such organism, Methanococcus jannaschii [7].
  • The crystal structure of the endonuclease from the archaeon Methanococcus jannaschii was determined to a resolution of 2.3 angstroms [8].
  • However, a single 62-kilodalton protein with canonical LysRS activity was purified from Methanococcus maripaludis, and the gene that encodes this protein was cloned [9].
  • We have determined the crystal structure of Methanococcus voltae RadA in complex with the ATP analog AMP-PNP at 2.0 A resolution [10].
 

Chemical compound and disease context of Methanococcus

 

Biological context of Methanococcus

 

Anatomical context of Methanococcus

 

Associations of Methanococcus with chemical compounds

  • Here, we present the X-ray structures of SelB from the archaeon Methanococcus maripaludis in the apo-, GDP- and GppNHp-bound form and use mutational analysis to investigate the role of individual amino acids in its aminoacyl-binding pocket [24].
  • Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis [25].
  • We have determined the crystal structures of two substrate-bound Methanococcus jannaschii tyrosyl aminoacyl-tRNA synthetases that charge the unnatural amino acids p-bromophenylalanine and 3-(2-naphthyl)alanine (NpAla) [26].
  • Structure-based design of mutant Methanococcus jannaschii tyrosyl-tRNA synthetase for incorporation of O-methyl-L-tyrosine [27].
  • Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form [28].
 

Gene context of Methanococcus

  • We have determined the crystal structure of Methanococcus jannaschii SRP19 bound to the S domain of human 7SL RNA at 2.9 A resolution [29].
  • We have determined the crystal structure of the complex between the Methanococcus jannaschii subunits E and F, the archaeal homologs of RPB7 and RPB4 [30].
  • Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution [31].
  • Here we report the crystal structure of one such protein, MJ0577, from a hyperthermophile, Methanococcus jannaschii, at 1.7-A resolution [32].
  • Crystal structure of an ATPase-active form of Rad51 homolog from Methanococcus voltae. Insights into potassium dependence [33].
 

Analytical, diagnostic and therapeutic context of Methanococcus

References

  1. Context-dependent anticodon recognition by class I lysyl-tRNA synthetases. Söll, D., Becker, H.D., Plateau, P., Blanquet, S., Ibba, M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  2. Species-specific differences in amino acid editing by class II prolyl-tRNA synthetase. Beuning, P.J., Musier-Forsyth, K. J. Biol. Chem. (2001) [Pubmed]
  3. Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Kerk, D., Bulgrien, J., Smith, D.W., Gribskov, M. Plant Physiol. (2003) [Pubmed]
  4. Mercury methylation by interspecies hydrogen and acetate transfer between sulfidogens and methanogens. Pak, K., Bartha, R. Appl. Environ. Microbiol. (1998) [Pubmed]
  5. The argG gene of Streptomyces clavuligerus has low homology to unstable argG from other actinomycetes: effect of amplification on clavulanic acid biosynthesis. Rodríguez-García, A., Martín, J.F., Liras, P. Gene (1995) [Pubmed]
  6. Structure of the SRP19 RNA complex and implications for signal recognition particle assembly. Hainzl, T., Huang, S., Sauer-Eriksson, A.E. Nature (2002) [Pubmed]
  7. One polypeptide with two aminoacyl-tRNA synthetase activities. Stathopoulos, C., Li, T., Longman, R., Vothknecht, U.C., Becker, H.D., Ibba, M., Söll, D. Science (2000) [Pubmed]
  8. Crystal structure and evolution of a transfer RNA splicing enzyme. Li, H., Trotta, C.R., Abelson, J. Science (1998) [Pubmed]
  9. A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Ibba, M., Morgan, S., Curnow, A.W., Pridmore, D.R., Vothknecht, U.C., Gardner, W., Lin, W., Woese, C.R., Söll, D. Science (1997) [Pubmed]
  10. Crystal structure of archaeal recombinase RADA: a snapshot of its extended conformation. Wu, Y., He, Y., Moya, I.A., Qian, X., Luo, Y. Mol. Cell (2004) [Pubmed]
  11. Cloning, purification, crystallization and preliminary X-ray studies of RFC boxes II-VIII of replication factor C from Methanococcus jannaschii. Lee, I., Lokanath, N.K., Min, K., Ha, S.C., Kim, D.Y., Kim, K.K. Acta Crystallogr. D Biol. Crystallogr. (2002) [Pubmed]
  12. Lactate dehydrogenase from the hyperthermophilic archaeon Methanococcus jannaschii: overexpression, crystallization and preliminary X-ray analysis. Lee, B.I., Chang, C., Cho, S.J., Han, G.W., Yu, Y.G., Eom, S.H., Suh, S.W. Acta Crystallogr. D Biol. Crystallogr. (2000) [Pubmed]
  13. Identification of a highly conserved pro-gly doublet in non-animal small heat shock proteins and characterization of its structural and functional roles in Mycobacterium tuberculosis Hsp16.3. Fu, X., Chang, Z. Biochemistry Mosc. (2006) [Pubmed]
  14. Computational identification of operons in microbial genomes. Zheng, Y., Szustakowski, J.D., Fortnow, L., Roberts, R.J., Kasif, S. Genome Res. (2002) [Pubmed]
  15. Hypermodification of tRNA in Thermophilic archaea. Cloning, overexpression, and characterization of tRNA-guanine transglycosylase from Methanococcus jannaschii. Bai, Y., Fox, D.T., Lacy, J.A., Van Lanen, S.G., Iwata-Reuyl, D. J. Biol. Chem. (2000) [Pubmed]
  16. Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. Moody, J.E., Millen, L., Binns, D., Hunt, J.F., Thomas, P.J. J. Biol. Chem. (2002) [Pubmed]
  17. Protein splicing in the absence of an intein penultimate histidine. Chen, L., Benner, J., Perler, F.B. J. Biol. Chem. (2000) [Pubmed]
  18. Methanocaldococcus jannaschii prolyl-tRNA synthetase charges tRNA(Pro) with cysteine. Ambrogelly, A., Ahel, I., Polycarpo, C., Bunjun-Srihari, S., Krett, B., Jacquin-Becker, C., Ruan, B., Köhrer, C., Stathopoulos, C., RajBhandary, U.L., Söll, D. J. Biol. Chem. (2002) [Pubmed]
  19. Hyperpolarization moves S4 sensors inward to open MVP, a methanococcal voltage-gated potassium channel. Sesti, F., Rajan, S., Gonzalez-Colaso, R., Nikolaeva, N., Goldstein, S.A. Nat. Neurosci. (2003) [Pubmed]
  20. Characterization of a P-type ATPase of the archaebacterium Methanococcus voltae. Dharmavaram, R.M., Konisky, J. J. Biol. Chem. (1989) [Pubmed]
  21. Isolation of flagella from the archaebacterium Methanococcus voltae by phase separation with Triton X-114. Kalmokoff, M.L., Jarrell, K.F., Koval, S.F. J. Bacteriol. (1988) [Pubmed]
  22. Studies of the GTPase domain of archaebacterial ribosomes. Beauclerk, A.A., Hummel, H., Holmes, D.J., Böck, A., Cundliffe, E. Eur. J. Biochem. (1985) [Pubmed]
  23. Immunoelectron microscopic location of tryptophanyl-tRNA synthetase in mammalian, prokaryotic and archaebacterial cells. Popenko, V.I., Cherny, N.E., Beresten, S.F., Ivanova, J.L., Filonenko, V.V., Kisselev, L.L. Eur. J. Cell Biol. (1993) [Pubmed]
  24. Selenocysteine tRNA-specific elongation factor SelB is a structural chimaera of elongation and initiation factors. Leibundgut, M., Frick, C., Thanbichler, M., Böck, A., Ban, N. EMBO J. (2005) [Pubmed]
  25. Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Ladapo, J., Whitman, W.B. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  26. Structural plasticity of an aminoacyl-tRNA synthetase active site. Turner, J.M., Graziano, J., Spraggon, G., Schultz, P.G. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  27. Structure-based design of mutant Methanococcus jannaschii tyrosyl-tRNA synthetase for incorporation of O-methyl-L-tyrosine. Zhang, D., Vaidehi, N., Goddard, W.A., Danzer, J.F., Debe, D. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  28. Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form. Jones, J.B., Stadtman, T.C. J. Biol. Chem. (1981) [Pubmed]
  29. Crystal structure of SRP19 in complex with the S domain of SRP RNA and its implication for the assembly of the signal recognition particle. Oubridge, C., Kuglstatter, A., Jovine, L., Nagai, K. Mol. Cell (2002) [Pubmed]
  30. Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. Todone, F., Brick, P., Werner, F., Weinzierl, R.O., Onesti, S. Mol. Cell (2001) [Pubmed]
  31. Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. Wang, H., Boisvert, D., Kim, K.K., Kim, R., Kim, S.H. EMBO J. (2000) [Pubmed]
  32. Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Zarembinski, T.I., Hung, L.W., Mueller-Dieckmann, H.J., Kim, K.K., Yokota, H., Kim, R., Kim, S.H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  33. Crystal structure of an ATPase-active form of Rad51 homolog from Methanococcus voltae. Insights into potassium dependence. Wu, Y., Qian, X., He, Y., Moya, I.A., Luo, Y. J. Biol. Chem. (2005) [Pubmed]
  34. Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. Haley, D.A., Bova, M.P., Huang, Q.L., Mchaourab, H.S., Stewart, P.L. J. Mol. Biol. (2000) [Pubmed]
  35. Crystallization and structure determination of the catalytic trimer of Methanococcus jannaschii aspartate transcarbamoylase. Vitali, J., Vorobyova, T., Webster, G., Kantrowitz, E.R. Acta Crystallogr. D Biol. Crystallogr. (2000) [Pubmed]
  36. Identification of the mcrC gene product in Methanococcus vannielii. Stroup, D., Reeve, J.N. FEMS Microbiol. Lett. (1993) [Pubmed]
 
WikiGenes - Universities