The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Azauracil     2H-1,2,4-triazine-3,5-dione

Synonyms: zlchem 198, PubChem20340, SureCN88056, NSC-3425, ACMC-1BSXW, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of AI3-26412


High impact information on AI3-26412

  • Transcriptional defects are also observed in yeast DNA sequences of hpr1Delta cells in the presence of the transcription elongation inhibitor 6-azauracil [5].
  • Whereas histone H3K4 trimethylation normally marks 5' ends of highly transcribed genes, under 'transcriptional stress' induced by 6-azauracil (6-AU) and inactivation of pol II, TFIIE or CTD kinases Kin28 and Ctk1, this mark shifted to the 3' end of the TEF1 gene [6].
  • Finally, we found that defects in the Paf1 complex cause sensitivity to 6-azauracil and diminished PUR5 induction, properties frequently associated with impaired transcription elongation [7].
  • This finding suggested that enhanced transcriptional arrest at RNA polymerase II pause sites due to 6-azauracil-induced nucleotide pool depletion was reduced in the deletion strain and that ScCHD1 inhibited transcription [8].
  • Targeted deletion of ScCHD1, the sole Saccharomyces cerevesiae CHD gene, was performed with deletion strains being less sensitive than wild type to the cytotoxic effect of 6-azauracil [8].

Biological context of AI3-26412


Anatomical context of AI3-26412

  • In this communication, we wish to describe the discovery of a novel series of 6-azauracil-based thyromimetics that possess up to 100-fold selectivities for binding and functional activation of the beta(1)-isoform of the thyroid receptor family [14].

Associations of AI3-26412 with other chemical compounds


Gene context of AI3-26412

  • A screen for mutations in RPO21 that confer 6AU sensitivity identified seven mutations that had been generated by either linker-insertion or random chemical mutagenesis [12].
  • 6-Azauracil also induced IMD2 gene expression in both these mutant strains and the wild type [19].
  • Disruption of RPB9 in yeast also resulted in sensitivity to 6-azauracil, which is a phenotype linked to defects in transcription elongation [20].
  • Here we show that in response to the application of IMPDH inhibitors such as 6AU, wild-type yeast strains induce transcription of PUR5, one of four genes encoding IMPDH-related enzymes [21].
  • One of the temperature-sensitive alleles of CEG1, a guanylyltransferase subunit of the Saccharomyces cerevisiae capping enzyme, showed 6-azauracil (6AU) sensitivity at the permissive growth temperature, which is a phenotype that is correlated with a transcription elongation defect [22].

Analytical, diagnostic and therapeutic context of AI3-26412

  • These prevented a broad spectrum of coccidial infections in chickens at minimum inhibitory concentrations by weight in feed as low as 0.25 ppm, a 4000-fold increase in potency over 6-azauracil, and had shorter plasma half-lives than earlier potent analogues [23].
  • Anticoccidial derivatives of 6-azauracil. 1. Enhancement of activity by benzylation of nitrogen-1. Observations on the design of nucleotide analogues in chemotherapy [24].
  • Potential carcinogenicity of the synthetic 1,3,6-triazine (6-azapyrimidine) nucleic acid analogues determined by DC polarography. II. Nucleosides of 6-azauracil [25].


  1. Mutations in the Saccharomyces cerevisiae RPB1 Gene Conferring Hypersensitivity to 6-Azauracil. Malagon, F., Kireeva, M.L., Shafer, B.K., Lubkowska, L., Kashlev, M., Strathern, J.N. Genetics (2006) [Pubmed]
  2. Increase in arginine and citrulline production by 6-azauracil-resistant mutants of Bacillus subtilis. Kato, J., Kisumi, M., Takagi, T., Chibata, I. Appl. Environ. Microbiol. (1977) [Pubmed]
  3. Identification of R146225 as a novel, orally active inhibitor of interleukin-5 biosynthesis. Van Wauwe, J., Aerts, F., Cools, M., Deroose, F., Freyne, E., Goossens, J., Hermans, B., Lacrampe, J., Van Genechten, H., Van Gerven, F., Van Nyen, G. J. Pharmacol. Exp. Ther. (2000) [Pubmed]
  4. A bacterial mutagenicity study of rivanol, an acridine derivative used as an abortifacient. Wugmeister, M., Summers, W.C. The Yale journal of biology and medicine. (1983) [Pubmed]
  5. The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Chávez, S., Aguilera, A. Genes Dev. (1997) [Pubmed]
  6. Altered nucleosome occupancy and histone H3K4 methylation in response to 'transcriptional stress'. Zhang, L., Schroeder, S., Fong, N., Bentley, D.L. EMBO J. (2005) [Pubmed]
  7. The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. Squazzo, S.L., Costa, P.J., Lindstrom, D.L., Kumer, K.E., Simic, R., Jennings, J.L., Link, A.J., Arndt, K.M., Hartzog, G.A. EMBO J. (2002) [Pubmed]
  8. Characterization of the CHD family of proteins. Woodage, T., Basrai, M.A., Baxevanis, A.D., Hieter, P., Collins, F.S. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  9. Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Ladapo, J., Whitman, W.B. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  10. The Rpb6 subunit of fission yeast RNA polymerase II is a contact target of the transcription elongation factor TFIIS. Ishiguro, A., Nogi, Y., Hisatake, K., Muramatsu, M., Ishihama, A. Mol. Cell. Biol. (2000) [Pubmed]
  11. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Krogan, N.J., Kim, M., Tong, A., Golshani, A., Cagney, G., Canadien, V., Richards, D.P., Beattie, B.K., Emili, A., Boone, C., Shilatifard, A., Buratowski, S., Greenblatt, J. Mol. Cell. Biol. (2003) [Pubmed]
  12. Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II. Archambault, J., Lacroute, F., Ruet, A., Friesen, J.D. Mol. Cell. Biol. (1992) [Pubmed]
  13. TFIIS enhances transcriptional elongation through an artificial arrest site in vivo. Kulish, D., Struhl, K. Mol. Cell. Biol. (2001) [Pubmed]
  14. Discovery of a novel series of 6-azauracil-based thyroid hormone receptor ligands: potent, TR beta subtype-selective thyromimetics. Dow, R.L., Schneider, S.R., Paight, E.S., Hank, R.F., Chiang, P., Cornelius, P., Lee, E., Newsome, W.P., Swick, A.G., Spitzer, J., Hargrove, D.M., Patterson, T.A., Pandit, J., Chrunyk, B.A., LeMotte, P.K., Danley, D.E., Rosner, M.H., Ammirati, M.J., Simons, S.P., Schulte, G.K., Tate, B.F., DaSilva-Jardine, P. Bioorg. Med. Chem. Lett. (2003) [Pubmed]
  15. Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Keogh, M.C., Podolny, V., Buratowski, S. Mol. Cell. Biol. (2003) [Pubmed]
  16. Functional interaction between TFIIB and the Rpb2 subunit of RNA polymerase II: implications for the mechanism of transcription initiation. Chen, B.S., Hampsey, M. Mol. Cell. Biol. (2004) [Pubmed]
  17. Biosynthesis of uridine monophosphate in Plasmodium berghei. O'Sullivan, W.J., Ketley, K. Ann. Trop. Med. Parasitol. (1980) [Pubmed]
  18. 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Exinger, F., Lacroute, F. Curr. Genet. (1992) [Pubmed]
  19. Cleavage, but not read-through, stimulation activity is responsible for three biologic functions of transcription elongation factor S-II. Ubukata, T., Shimizu, T., Adachi, N., Sekimizu, K., Nakanishi, T. J. Biol. Chem. (2003) [Pubmed]
  20. RNA polymerase II subunit Rpb9 regulates transcription elongation in vivo. Hemming, S.A., Jansma, D.B., Macgregor, P.F., Goryachev, A., Friesen, J.D., Edwards, A.M. J. Biol. Chem. (2000) [Pubmed]
  21. Saccharomyces cerevisiae transcription elongation mutants are defective in PUR5 induction in response to nucleotide depletion. Shaw, R.J., Reines, D. Mol. Cell. Biol. (2000) [Pubmed]
  22. mRNA capping enzyme activity is coupled to an early transcription elongation. Kim, H.J., Jeong, S.H., Heo, J.H., Jeong, S.J., Kim, S.T., Youn, H.D., Han, J.W., Lee, H.W., Cho, E.J. Mol. Cell. Biol. (2004) [Pubmed]
  23. Anticoccidial derivatives of 6-azauracil. 4. A 1000-fold enhancement of potency by phenyl sulfide and phenyl sulfone side chains. Miller, M.W., Mylari, B.L., Howes, H.L., Figdor, S.K., Lynch, M.J., Lynch, J.E., Gupta, S.K., Chappel, L.R., Koch, R.C. J. Med. Chem. (1981) [Pubmed]
  24. Anticoccidial derivatives of 6-azauracil. 1. Enhancement of activity by benzylation of nitrogen-1. Observations on the design of nucleotide analogues in chemotherapy. Mylari, B.L., Miller, M.W., Howes, H.L., Figdor, S.K., Lynch, J.E., Koch, R.C. J. Med. Chem. (1977) [Pubmed]
  25. Potential carcinogenicity of the synthetic 1,3,6-triazine (6-azapyrimidine) nucleic acid analogues determined by DC polarography. II. Nucleosides of 6-azauracil. Novotný, L., Vachálková, A., Pískala, A. Neoplasma (1999) [Pubmed]
WikiGenes - Universities