Inhibition of cyclooxygenase-2 attenuates urinary prostanoid excretion without affecting renal renin expression.
This study aimed to assess the impact of cyclooxygenase-2 (COX-2) on the secretion and expression of renin in the kidney cortex. For this purpose renocortical COX-2 expression was moderately stimulated by a low-salt diet or strongly stimulated (increase in mRNA about fivefold) by the combination of a low-salt diet and the angiotensin-I-converting enzyme inhibitor ramipril in male Sprague-Dawley rats. None of these manoeuvres changed medullary COX-2 expression or cortical or medullary COX-1 expression. Treatment with low salt plus ramipril but not with low salt alone led to a three- to fourfold increase of the urinary output of all major prostanoids. The selective COX-2 inhibitor rofecoxib (10 mg/kg per day) markedly lowered basal urinary prostanoid excretion and blunted the stimulation of prostanoid excretion during treatment with low salt plus ramipril. The stimulation of renin secretion by the low-salt diet but not by low salt plus ramipril was attenuated by rofecoxib. The low-salt diet led to a moderate increase of renin gene expression, and additional treatment with ramipril caused a 15-fold increase of renin mRNA. However, no effect of rofecoxib on renin gene expression was observed in any group. These findings suggest that stimulation of COX-2 in the renal cortex leads to the increased formation of all major prostanoids. COX-2-derived prostanoids may play a role in the regulation of renin secretion but not in renin gene expression during the intake of a low-salt diet. However, no major relevance of COX-2-derived prostanoids to renin secretion or renin gene expression during ramipril treatment or a combination of ramipril and a low-salt diet was found.[1]References
- Inhibition of cyclooxygenase-2 attenuates urinary prostanoid excretion without affecting renal renin expression. Kammerl, M.C., Nüsing, R.M., Seyberth, H.W., Riegger, G.A., Kurtz, A., Krämer, B.K. Pflugers Arch. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg