The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Diet, Sodium-Restricted

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Diet, Sodium-Restricted


High impact information on Diet, Sodium-Restricted


Chemical compound and disease context of Diet, Sodium-Restricted


Biological context of Diet, Sodium-Restricted


Anatomical context of Diet, Sodium-Restricted

  • Rat liver angiotensinogen cDNA (pRang 3) and mouse renin cDNA (pDD-1D2) were used to identify angiotensinogen and renin mRNA sequences in rat kidney cortex and medulla in rats on high and low salt diet [20].
  • Activation of the aldosterone system by a low sodium diet up-regulated the expression of PKG II, however, it did not change PKG I expression in adrenal cortex [21].
  • In the adrenal gland, in which the AT1B receptor is predominant, low salt diet led to a transient increase in the expression of this receptor gene, with a maximum around day 10 of feeding [22].
  • In rats consuming a low sodium diet, renal cortical interstitial fluid kinin and cortical and medullary PGE2 and cGMP appearance rates were significantly increased (P < .01) [23].
  • Erythrocytes from the rats on the low-sodium diet had significantly (P less than 0.025) lower intracellular sodium (3.9 +/- 0.4 mmol/l) while cells from the rats given nitrendipine had significantly (P less than 0.005) higher intracellular sodium (13.3 +/- 0.8 mmol/l) than those from the rats on a high-salt diet (7.4 +/- 1.4 mmol/l) [24].

Associations of Diet, Sodium-Restricted with chemical compounds

  • The time course of sodium regulation of glomerular angiotensin II receptors was studied in rats switched from a moderate sodium to either a high sodium diet or a low sodium diet plus furosemide [25].
  • Rabbits were treated with either angiotensin converting enzyme inhibitors or a low salt diet to modulate endogenous Ang II levels [26].
  • Superfused ZG cells from rats on a low sodium diet secreted 1.85 +/- 0.58-fold more Ang II than cells from sodium-loaded rats (p < 0.05, n = 6) [27].
  • Renal renin mRNA levels both under stimulatory (low-salt diet plus ramipril) and inhibitory (high-salt diet) conditions were not different between wild-type and cGKI-/- mice, but were significantly elevated in cGKII-/- mice under all experimental conditions [28].
  • A low sodium diet significantly increased beta-receptor-stimulated adenylate cyclase activity in hypertensives (low sodium, 51 +/- 7%; high sodium, 24 +/- 5%, P less than 0.025) to a level not different than that of normotensives (46 +/- 5%) [29].

Gene context of Diet, Sodium-Restricted

  • Effect of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet. A randomized, controlled trial [16].
  • In all of the organs examined, with the exception of the adrenal glands, low salt diet led to a transient decrease in the abundance of AT1A receptor mRNA but not of AT1B mRNA, which reached their nadirs between days 5 and 10 of feeding [22].
  • Experimental maneuvers such as low-salt diet, treatment with loop diuretics or angiotensin I converting enzyme inhibitors clearly increased renin mRNA abundance up to sevenfold, but under none of these conditions renocortical Cox-2 mRNA levels were significantly changed [30].
  • The ANP-/- mice had significant LV cardiomyocyte hypertrophy when fed either basal or low-salt diets [31].
  • Rats were fed a normal diet, low salt diet or low salt diet combined with captopril and half of them were treated with the neuronal NOS inhibitor, 7-NI, and half with vehicle [32].

Analytical, diagnostic and therapeutic context of Diet, Sodium-Restricted


  1. Angiotensin and the renal circulation in hypertension. Hollenberg, N.K., Williams, G.H. Circulation (1988) [Pubmed]
  2. Pathophysiological role and diuretic efficacy of atrial natriuretic peptide in renal patients. De Nicola, L., Bellizzi, V., Cianciaruso, B., Minutolo, R., Colucci, G., Balletta, M., Fuiano, G., Conte, G. J. Am. Soc. Nephrol. (1997) [Pubmed]
  3. Plasma aldosterone response to ACTH in primary aldosteronism and in patients with low renin hypertension. Kem, D.C., Weinberger, M.H., Higgins, J.R., Kramer, N.J., Gomez-Sanchez, C., Holland, O.B. J. Clin. Endocrinol. Metab. (1978) [Pubmed]
  4. Effects of long-term treatment with indomethacin on renal function. Ruilope, L.M., Garcia Robles, R., Paya, C., Alcazar, J.M., Miravalles, E., Sancho-Rof, J., Rodicio, J., Knox, F.G., Romero, J.C. Hypertension (1986) [Pubmed]
  5. Characterization of plasma and cerebrospinal fluid human angiotensinogen and des-angiotensin I-angiotensinogen by direct radioimmunoassay. Genain, C., Bouhnik, J., Tewksbury, D., Corvol, P., Menard, J. J. Clin. Endocrinol. Metab. (1984) [Pubmed]
  6. The influence of oral potassium chloride on blood pressure in hypertensive men on a low-sodium diet. Grimm, R.H., Neaton, J.D., Elmer, P.J., Svendsen, K.H., Levin, J., Segal, M., Holland, L., Witte, L.J., Clearman, D.R., Kofron, P. N. Engl. J. Med. (1990) [Pubmed]
  7. Anticystinuric effects of glutamine and of dietary sodium restriction. Jaeger, P., Portmann, L., Saunders, A., Rosenberg, L.E., Thier, S.O. N. Engl. J. Med. (1986) [Pubmed]
  8. Treatment of hypoparathyroid patients with chlorthalidone. Porter, R.H., Cox, B.G., Heaney, D., Hostetter, T.H., Stinebaugh, B.J., Suki, W.N. N. Engl. J. Med. (1978) [Pubmed]
  9. Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells. Peti-Peterdi, J., Komlosi, P., Fuson, A.L., Guan, Y., Schneider, A., Qi, Z., Redha, R., Rosivall, L., Breyer, M.D., Bell, P.D. J. Clin. Invest. (2003) [Pubmed]
  10. Role of aldosterone in the antihypertensive effect of spironolactone in essential hypertension. Benraad, H., Drayer, J., Hoefnagels, W., Kloppenborg, P., Benraad, T. Clin. Pharmacol. Ther. (1978) [Pubmed]
  11. Prolonged converting enzyme inhibition in non-modulating hypertension. Dluhy, R.G., Smith, K., Taylor, T., Hollenberg, N.K., Williams, G.H. Hypertension (1989) [Pubmed]
  12. Renal injury and salt-sensitive hypertension after exposure to catecholamines. Johnson, R.J., Gordon, K.L., Suga, S., Duijvestijn, A.M., Griffin, K., Bidani, A. Hypertension (1999) [Pubmed]
  13. Pharmacological advances in the treatment of neuro-otological and eye movement disorders. Strupp, M., Brandt, T. Curr. Opin. Neurol. (2006) [Pubmed]
  14. Dietary restriction of sodium as a means of reducing urinary cystine. Norman, R.W., Manette, W.A. J. Urol. (1990) [Pubmed]
  15. Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli. Ballermann, B.J., Hoover, R.L., Karnovsky, M.J., Brenner, B.M. J. Clin. Invest. (1985) [Pubmed]
  16. Effect of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet. A randomized, controlled trial. Swan, S.K., Rudy, D.W., Lasseter, K.C., Ryan, C.F., Buechel, K.L., Lambrecht, L.J., Pinto, M.B., Dilzer, S.C., Obrda, O., Sundblad, K.J., Gumbs, C.P., Ebel, D.L., Quan, H., Larson, P.J., Schwartz, J.I., Musliner, T.A., Gertz, B.J., Brater, D.C., Yao, S.L. Ann. Intern. Med. (2000) [Pubmed]
  17. A low-sodium diet corrects the defect in beta-adrenergic response in older subjects. Feldman, R.D. Circulation (1992) [Pubmed]
  18. Renal vascular response to sodium loading in sons of hypertensive parents. Textor, S.C., Turner, S.T. Hypertension (1991) [Pubmed]
  19. Renal, hemodynamic, and hormonal responses to atrial natriuretic peptide infusions in normal man, and effect of sodium intake. Cuneo, R.C., Espiner, E.A., Nicholls, M.G., Yandle, T.G., Joyce, S.L., Gilchrist, N.L. J. Clin. Endocrinol. Metab. (1986) [Pubmed]
  20. Sodium regulation of angiotensinogen mRNA expression in rat kidney cortex and medulla. Ingelfinger, J.R., Pratt, R.E., Ellison, K., Dzau, V.J. J. Clin. Invest. (1986) [Pubmed]
  21. cGMP-dependent protein kinase type II regulates basal level of aldosterone production by zona glomerulosa cells without increasing expression of the steroidogenic acute regulatory protein gene. Gambaryan, S., Butt, E., Marcus, K., Glazova, M., Palmetshofer, A., Guillon, G., Smolenski, A. J. Biol. Chem. (2003) [Pubmed]
  22. Dietary salt intake modulates angiotensin II type 1 receptor gene expression. Schmid, C., Castrop, H., Reitbauer, J., Della Bruna, R., Kurtz, A. Hypertension (1997) [Pubmed]
  23. Rat renal interstitial bradykinin, prostaglandin E2, and cyclic guanosine 3',5'-monophosphate. Effects of altered sodium intake. Siragy, H.M., Ibrahim, M.M., Jaffa, A.A., Mayfield, R., Margolius, H.S. Hypertension (1994) [Pubmed]
  24. Effect of calcium on blood pressure, platelet aggregation and erythrocyte sodium transport in Dahl salt-sensitive rats. Kang, J.S., Cregor, M.D., Smith, J.B. J. Hypertens. (1990) [Pubmed]
  25. Mechanism of sodium modulation of glomerular angiotensin receptors in the rat. Bellucci, A., Wilkes, B.M. J. Clin. Invest. (1984) [Pubmed]
  26. Angiotensin II upregulates type-1 angiotensin II receptors in renal proximal tubule. Cheng, H.F., Becker, B.N., Burns, K.D., Harris, R.C. J. Clin. Invest. (1995) [Pubmed]
  27. Study of the rat adrenal renin-angiotensin system at a cellular level. Chiou, C.Y., Williams, G.H., Kifor, I. J. Clin. Invest. (1995) [Pubmed]
  28. Role of cGMP-kinase II in the control of renin secretion and renin expression. Wagner, C., Pfeifer, A., Ruth, P., Hofmann, F., Kurtz, A. J. Clin. Invest. (1998) [Pubmed]
  29. Low sodium diet corrects the defect in lymphocyte beta-adrenergic responsiveness in hypertensive subjects. Feldman, R.D., Lawton, W.J., McArdle, W.L. J. Clin. Invest. (1987) [Pubmed]
  30. Differential regulation of renin and Cox-2 expression in the renal cortex of C57Bl/6 mice. Wagner, C., Vitzthum, H., Castrop, H., Schumacher, K., Bucher, M., Albertin, S., Coffman, T.M., Arendshorst, W.J., Kurtz, A. Pflugers Arch. (2003) [Pubmed]
  31. Pressure-independent enhancement of cardiac hypertrophy in atrial natriuretic peptide-deficient mice. Feng, J.A., Perry, G., Mori, T., Hayashi, T., Oparil, S., Chen, Y.F. Clin. Exp. Pharmacol. Physiol. (2003) [Pubmed]
  32. Interactions of the renin-angiotensin system and neuronal nitric oxide synthase in regulation of cyclooxygenase-2 in the macula densa. Harris, R.C., Cheng, H., Wang, J., Zhang, M., McKanna, J.A. Acta Physiol. Scand. (2000) [Pubmed]
  33. 'Low sodium' diuresis and ileal loss in patients with ileostomies: effect of desmopressin. Sutters, M., Carmichael, D.J., Unwin, R.J., Sozi, C., Hunter, M., Calam, J., Lightman, S.L., Peart, W.S. Gut (1991) [Pubmed]
  34. Effect of sodium depletion on plasma renin concentration before and during adrenergic beta-receptor blockade with propranolol in normotensive man. Omvik, P., Enger, E., Eide, I. Am. J. Med. (1976) [Pubmed]
  35. Pathways for angiotensin II generation in intact human tissue: evidence from comparative pharmacological interruption of the renin system. Hollenberg, N.K., Fisher, N.D., Price, D.A. Hypertension (1998) [Pubmed]
  36. Low sodium and furosemide-induced stimulation of the renin system in man is mediated by cyclooxygenase 2. Kammerl, M.C., Nüsing, R.M., Schweda, F., Endemann, D., Stubanus, M., Kees, F., Lackner, K.J., Fischereder, M., Krämer, B.K. Clin. Pharmacol. Ther. (2001) [Pubmed]
  37. Differential regulation of angiotensin II receptor subtypes in rat kidney by low dietary sodium. Du, Y., Yao, A., Guo, D., Inagami, T., Wang, D.H. Hypertension (1995) [Pubmed]
WikiGenes - Universities