The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

GABA(A) receptor beta 2 Tyr97 and Leu99 line the GABA-binding site. Insights into mechanisms of agonist and antagonist actions.

The identification of residues that line neurotransmitter-binding sites and catalyze allosteric transitions that result in channel gating is crucial for understanding ligand-gated ion channel function. In this study, we used the substituted cysteine accessibility method and two-electrode voltage clamp to identify novel gamma-aminobutyric acid (GABA)-binding site residues and to elucidate the secondary structure of the Trp(92)-Asp(101) region of the beta(2) subunit. Each residue was mutated individually to cysteine and expressed with wild-type alpha(1) subunits in Xenopus oocytes. GABA-gated currents (I(GABA)) were measured before and after exposure to the sulfhydryl reagent, N-biotinylaminoethyl methanethiosulfonate (MTS). V93C, D95C, Y97C, and L99C are accessible to derivatization. This pattern of accessibility is consistent with beta(2)Val(93)-Leu(99) adopting a beta-strand conformation. Both GABA and SR95531 protect Y97C and L99C from modification, indicating that these two residues line the GABA-binding site. In D95C-containing receptors, application of MTS in the presence of SR95531 causes a greater effect on I(GABA) than MTS alone, suggesting that binding of a competitive antagonist can cause movements in the binding site. In addition, we present evidence that beta(2)L99C homomers form spontaneously open channels. Thus, mutation of a binding site residue can alter channel gating, which implies that Leu(99) may be important for coupling agonist binding to channel gating.[1]


WikiGenes - Universities