The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

PGC-1 functions as a transcriptional coactivator for the retinoid X receptors.

Ligand-dependent gene transcription mediated by the nuclear receptors involves the recruitment of transcriptional coactivators to the ligand-binding domain (LBD), which leads to interaction with the basal transcription machinery, and ultimately with RNA polymerase II. Although most of these coactivators are ubiquitously expressed, a tissue-selective coactivator, PGC-1, has recently been characterized. Because PGC-1 and the retinoid X receptors (RXRs) possess an overlapping tissue distribution, we investigated whether PGC-1 is a coactivator for the retinoid X receptors. In a transient transfection assay, PGC-1 augments ligand-stimulated RXR transcription. Furthermore, PGC-1 efficiently enhances the RXR element-driven reporter gene transcription by all three RXR isoforms. An immunoprecipitation assay reveals that PGC-1 and RXRalpha interact in vivo. In addition, a glutathione S-transferase pull-down assay showed that this interaction requires the presence of the LXXLL motif of PGC-1. We demonstrate further, in a mammalian two-hybrid assay, that this physical interaction also requires the presence of the AF-2 region of RXR to interact with the LXXLL motif of PGC-1, which is consistent with our protein-protein interaction results. A time-resolved fluorescence assay shows that a peptide within the NR box of PGC-1 is efficiently recruited by a ligand-bound RXRalpha in vitro. Finally, PGC-1 and TIF2 synergistically enhance ligand-activated RXRalpha transcriptional activity. Taken together, these results indicate that PGC-1 is a bona fide coactivator for RXRalpha.[1]

References

  1. PGC-1 functions as a transcriptional coactivator for the retinoid X receptors. Delerive, P., Wu, Y., Burris, T.P., Chin, W.W., Suen, C.S. J. Biol. Chem. (2002) [Pubmed]
 
WikiGenes - Universities