The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Tolerance for ATP-insensitive K(ATP) channels in transgenic mice.

To examine the role of sarcolemmal K(ATP) channels in cardiac function, we generated transgenic mice expressing GFP-tagged Kir6.2 subunits with reduced ATP sensitivity under control of the cardiac alpha-myosin heavy chain promoter. Four founder mice were isolated, and both founders and progeny were all apparently normal and fertile. Electrocardiograms from conscious animals also appeared normal, although mean 24-hour heart rate was approximately 10% lower in transgenic animals compared with littermate controls. In excised membrane patches, K(ATP) channels were very insensitive to inhibitory ATP: mean K(1/2) ([ATP] causing half-maximal inhibition) was 2.7 mmol/L in high-expressing line 4 myocytes, compared with 51 micromol/L in littermate control myocytes. Counterintuitively, K(ATP) channel density was approximately 4-fold lower in transgenic membrane patches than in control. This reduction of total K(ATP) conductance was confirmed in whole-cell voltage-clamp conditions, in which K(ATP) was activated by metabolic inhibition. K(ATP) conductance was not obvious after break-in of either control or transgenic myocytes, and there was no action potential shortening in transgenic myocytes. In marked contrast to the effects of expression of similar transgenes in pancreatic beta-cells, these experiments demonstrate a profound tolerance for reduced ATP sensitivity of cardiac K(ATP) channels and highlight differential effects of channel activity in the electrical activity of the 2 tissues.[1]


  1. Tolerance for ATP-insensitive K(ATP) channels in transgenic mice. Koster, J.C., Knopp, A., Flagg, T.P., Markova, K.P., Sha, Q., Enkvetchakul, D., Betsuyaku, T., Yamada, K.A., Nichols, C.G. Circ. Res. (2001) [Pubmed]
WikiGenes - Universities