The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A reaction-induced FT-IR study of cyanobacterial photosystem I.

In oxygenic photosynthesis, photosystem I (PSI) conducts light-driven electron transfer from plastocyanin to ferredoxin. The reactions are initiated when the primary chlorophyll donor, P(700), is photooxidized. P(700) is a chlorophyll dimer ligated by the core subunits psaA and psaB. A difference Fourier transform infrared spectrum, associated with P(700)(+)-minus-P(700), can be acquired using PSI from the cyanobacterium Synechocystis sp. PCC 6803. This spectrum reflects contributions from oxidation-sensitive modes of chlorophyll, as well as from oxidation-induced structural changes in amino acid residues and the peptide backbone. Oxidation-induced structural changes may play a role in the facilitation and control of electron-transfer reactions involving the primary donor. In this paper, we report that photooxidation of P(700) in cyanobacterial PSI perturbs a cysteine residue. At 264 and 80 K, a downshift of a SH stretching vibration from 2560 to 2551 cm(-1) is observed. Such a downshift is consistent with an increase in hydrogen bonding, with a change in C-S-H conformation, or with an electric field effect. Deuterium exchange experiments were also performed. While the perturbed cysteine is in a protein region that is resistant to exchange, other (2)H-sensitive vibrational chl and amino acid bands were observed. From the (2)H exchange experiments, we conclude that photooxidation of P(700) perturbs internal or bound water molecules in PSI and that the P(700)(+)-minus-P(700) spectrum is (2)H exchange-sensitive. The results are consistent with structural complexity in the PSI primary donor, as previously suggested [Kim, S., and Barry, B. A. (2000) J. Am. Chem. Soc. 122, 4980-4981]. Possible explanations, including a partial enolization of P(700)(+), are discussed.[1]


  1. A reaction-induced FT-IR study of cyanobacterial photosystem I. Kim, S., Sacksteder, C.A., Bixby, K.A., Barry, B.A. Biochemistry (2001) [Pubmed]
WikiGenes - Universities